Analysis of 25 Years of Polar Motion Derived from the DORIS Space Geodetic Technique Using FFT and SSA Methods
Abstract
:1. Introduction
2. Mathematical Models
2.1. FFT
2.2. SSA
3. PM Analysis Using FFT and SSA
3.1. DORIS PM Analysis and Comparison with EOP 14 C04
3.2. FFT Analysis of the Time-Series
3.3. SSA of the PM and Analysis of the Main RCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Discrete Fourier Transform |
DORIS | Doppler Orbitography and Radiopositioning Integrated by Satellite |
FBPF | Fourier Band-Pass Filtering |
FFT | Fourier Fast Transform |
GNSS | Global Navigation Satellite System |
GRACE | Gravity Recovery and Climate Experiment |
IGN | Institute Geographique National |
INA | Institute of Astronomy |
INASAN | Russian Academy of Sciences |
ITRF | International Terrestrial Reference Frame |
JPL | Jet Propulsion Laboratory |
LEO | Low Earth Orbit |
MSSA | Multi-Channel Singular Spectrum Analysis |
PC | Principal Component |
PM | Polar Motion |
PMX | Polar Motion in X Direction |
PMY | Polar Motion in Y Direction |
RC | Reconstructed Components |
RMS | Root Mean Square |
SLR | Satellite Laser Ranging |
SSA | Singular Spectrum Analysis |
SVD | Singular Value Decomposition |
VLBI | Very Long Baseline Interferometry |
References
- Van, D.M.M.; Pail, R.; Bingham, R.; Floberghagen, R. GOCE data, models, and applications: A review. Int. J. Appl. Earth Obs. 2015, 35, 4–15. [Google Scholar]
- Modiri, S.; Belda, S.; Heinkelmann, R.; Hoseini, M.; José, M.F.; Schuh, H. Polar motion prediction using the combination of SSA and Copula-based analysis. Earth Planets Space 2018, 70, 70–115. [Google Scholar] [CrossRef] [PubMed]
- Schuh, H.; Böhm, S. Earth Rotation. In Encyclopedia of Solid Earth Geophysics, 1st ed.; Gupta, H.K., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 123–129. [Google Scholar]
- Gross, R.S. Earth Rotation Variations—Long Period. In Physical Geodesy; Herring, T.A., Ed.; Treatise on Geophysics; Elsevier: Amsterdam, The Netherlands, 2015; Volume 11, pp. 215–261. [Google Scholar]
- Gambis, D. DORIS and the determination of the Earth’s polar motion. J. Geodesy. 2006, 80, 649–656. [Google Scholar] [CrossRef]
- Soudarin, L.; Capdeville, H.; Lemoine, J. Contribution of the New DORIS/DGXX Instrument to the Geodetic Products: First Results with Cryosat-2. In Proceedings of the IDS Workshop, Lisbon, Portugal, 21–22 October 2010. [Google Scholar]
- Kong, Q.; Gao, F.; Guo, J.; Han, L.; Zhang, L.; Shen, Y. Analysis of precise orbit predictions for a HY-2A satellite with three atmospheric density models based on dynamic method. Remote Sens. 2019, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wang, R.; Sun, F.; Wang, J. A unified global reference frame of vertical crustal movements by satellite laser ranging. Sensors 2016, 16, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling non-linear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Moreaux, G.; Leoine, F.G.; Capdeville, H.; Kuzin, S.; Ferrage, P. The International DORIS Service contribution to the 2014 realization of the International Terrestrial Reference Frame. Adv. Space Res. 2016, 58, 2479–2504. [Google Scholar] [CrossRef]
- Bizouard, C.; Lambert, S.; Gattano, C.; Becker, O.; Richard, J.Y. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J. Geodesy. 2019, 93, 621–633. [Google Scholar] [CrossRef]
- Blossfeld, M.; Seitz, M.; Angermann, D.; Moreaux, G. Quality assessment of IDS contribution to ITRF2014 performed by DGFI-TUM. Adv. Space Res. 2016, 58, 2505–2519. [Google Scholar] [CrossRef]
- Lian, L.; Wang, J.; Huang, C. Analysis and combination of four technique-individual EOP time series. Geodesy Geodyn. 2019, 10, 130–139. [Google Scholar] [CrossRef]
- Cochran, W.T.; Cooley, J.W.; Favin, D.L.; Helms, H.D.; Kaenel, R.A.; Lang, W.W.; Maling, G.C.; Nelson, D.E.; Rader, C.M.; Welch, P.D. What is the fast Fourier transform? Proc. IEEE 1967, 55, 1664–1674. [Google Scholar] [CrossRef]
- Kondrashov, D.; Berloff, P. Stochastic modeling of decadal variability in ocean gyres. Geophys. Res. Lett. 2015, 42, 1543–1553. [Google Scholar] [CrossRef]
- Wyatt, M.G.; Kravtsov, S.; Tsonis, A.A. Atlantic multi decadal oscillation and northern hemisphere’s climate variability. Clim. Dyn. 2012, 38, 929–949. [Google Scholar] [CrossRef]
- Rial, J.A.; Oh, J.; Reischmann, E. Synchronization of the climate system to eccentricity forcing and the 100,000-year problem. Nat. Geosci. 2013, 6, 289–293. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Y.; Wu, S.; Zhang, K. An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement. J. Geophys. Res. 2016, 121, 2193–2211. [Google Scholar] [CrossRef] [Green Version]
- Rangelova, E.; Sideris, M.G.; Kim, J.W. On the capabilities of the multi-channel singular spectrum method for extracting the main periodic and non-periodic variability from weekly GRACE data. J. Geodyn. 2012, 54, 64–78. [Google Scholar] [CrossRef]
- Khelifa, S.; Kahlouche, S.; Belbachir, M.F. Signal and noise separation in time series of DORIS station coordinates using wavelet and singular spectrum analysis. Comptes Rendus Geosci. 2012, 344, 334–348. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, G.; Tu, Y. The SSA + FBPF method and its application on extracting the periodic term from BeiDou satellite clock bais. Acta Geod. Cartogr. Sin. 2016, 45, 172–178. [Google Scholar]
- Zhang, W. Extracting the Trend and Seasonal Component Information of GNSS Coordinate Time Series Based on Improved Singular Spectrum Analysis Method. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2014. [Google Scholar]
- Shen, Y.; Guo, J.; Liu, X.; Kong, Q.; Guo, L.; Li, W. Long-term prediction of polar motion using a combined SSA and ARMA model. J. Geodesy. 2018, 92, 333–343. [Google Scholar] [CrossRef]
- Guo, J.; Han, Y. Seasonal and annual variation of polar motion and LOD with SLR in 1993–2006. Sci. China 2008, 53, 2562–2568. [Google Scholar]
- Broomhead, D.S.; King, G.P. Extracting qualitative dynamics from experimental data. Physica D 1986, 20, 217–236. [Google Scholar] [CrossRef]
- Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; et al. Advanced spectral methods for climatic time series. Rev. Geophys. 2002, 40, 1003–1043. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy, chaotic signals. Physica D 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Vautard, R.; Ghil, M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 1989, 35, 395–424. [Google Scholar] [CrossRef]
- Webb, F.H.; Zumberge, J.F. An Introduction to GIPSY-OASIS II; JPL Internal Document D-11088; Jet Propulsion Laboratory: Pasadena, CA, USA, 1997. [Google Scholar]
- Willis, P.; Boucher, C.; Fagard, H. Geodetic applications of the DORIS system at the French Institut Geographique National. Comptes Rendus Geosci. 2005, 337, 653–662. [Google Scholar] [CrossRef]
- Willis, P.; Boucher, C.; Fagard, H.; Garayt, B.; Gobinddass, M.L. Contributions of the French Institute Geographique National (IGN) to the International DORIS Service. Adv. Space Res. 2010, 45, 1470–1480. [Google Scholar] [CrossRef]
- Kuzin, S.; Tatevian, S. DORIS data processing in the INASAN Analysis Center and the contribution to ITRF2014. Adv. Space Res. 2016, 58, 2561–2571. [Google Scholar] [CrossRef]
- Surendra, A.; Erik, R.I. Climate-driven polar motion: 2003–2015. Sci. Adv. 2016, 2, e1501693. [Google Scholar]
- Chung, T.W.; Na, S.H. A least square fit analysis on the Earth’s polar motion time series: Implication against Smylie’s conjecture. Geophys. Geophys. Expl. 2016, 12, 91–96. [Google Scholar]
- Hu, M.C. Polar Motion. In The Theory and the Application of Contemporary Geodesy, 1st ed.; Li, J.M., Ed.; Geomatics Press: Beijing, China, 2003; Volume 1, pp. 325–328. [Google Scholar]
- Schuh, H.; Richter, B.; Nagel, S. Analysis of Long Time Series of Polar Motion; Dick, S., McCarthy, D., Luzum, B., Eds.; Polar Motion: Historical and Scientific Problems ASP Conference Series; International Astronomical Union Colloquium; Cambridge University Press: Cambridge, UK, 2000; pp. 321–332. [Google Scholar]
Direction | Max | Min | Mean | STD | RMS |
---|---|---|---|---|---|
X | 41.779 | −40.014 | 1.087 | 1.584 | 1.594 |
Y | 22.557 | −35.919 | 1.026 | 1.460 | 1.465 |
PMX | PMY | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RC | RC2 + RC3 | RC4 + RC5 | RC6 + RC7 | RC8 + RC9 | RC10 + RC11 | RC2 + RC3 | RC4 + RC5 | RC6 + RC7 | RC8 + RC9 | RC10 + RC11 | |||
DORIS | Period (years) | 1.181 | 0.998 | 1.360 | 0.847 | 1.952 | 1.181 | 0.998 | 1.360 | 1.952 | 8.978 | 0.863 | 11.220 |
Magnitude (%) | 57.550 | 47.050 | 4.497 | 3.742 | 2.634 | 59.590 | 45.550 | 5.051 | 3.194 | 0.294 | 2.475 | 0.835 | |
Amplitude (mas) | 213.311 | 119.924 | 20.880 | 12.117 | 10.063 | 209.449 | 106.554 | 20.576 | 12.133 | 10.337 | |||
EOP 14 C04 | Period (years) | 1.181 | 0.998 | 1.360 | 0.847 | 1.952 | 1.181 | 0.998 | 1.360 | 11.952 | 8.978 | 0.863 | 11.220 |
Magnitude (%) | 57.100 | 42.620 | 6.060 | 3.599 | 2.458 | 59.400 | 44.750 | 4.611 | 3.068 | 0.440 | 2.440 | 1.095 | |
Amplitude (mas) | 213.562 | 124.384 | 21.864 | 12.128 | 9.987 | 210.416 | 109.092 | 21.751 | 12.160 | 9.652 |
PMX (mas) | PMY (mas) | ||||||
---|---|---|---|---|---|---|---|
Max | Min | Mean | RMS | Max | Min | Mean | RMS |
45.007 | −37.133 | 0.0804 | 7.050 | 36.883 | −34.010 | −0.129 | 6.007 |
PMX | PMY | |||
---|---|---|---|---|
RC | RC12 + RC13 | RC14 + RC15 | RC12 + RC13 | RC14 + RC15 |
Period (years) | 0.788, 2.244, 7.481 | 0.499 | 0.802, 2.363, 8.978 | 0.499 |
Magnitude (%) | 1.25 | 1.304 | 1.045, 0.830, 0.361 | 1.740 |
Amplitude (mas) | 6.507 | 4.592 | 9.884 | 3.638 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Q.; Zhang, L.; Han, L.; Guo, J.; Zhang, D.; Fang, W. Analysis of 25 Years of Polar Motion Derived from the DORIS Space Geodetic Technique Using FFT and SSA Methods. Sensors 2020, 20, 2823. https://doi.org/10.3390/s20102823
Kong Q, Zhang L, Han L, Guo J, Zhang D, Fang W. Analysis of 25 Years of Polar Motion Derived from the DORIS Space Geodetic Technique Using FFT and SSA Methods. Sensors. 2020; 20(10):2823. https://doi.org/10.3390/s20102823
Chicago/Turabian StyleKong, Qiaoli, Linggang Zhang, Litao Han, Jinyun Guo, Dezhi Zhang, and Wenhao Fang. 2020. "Analysis of 25 Years of Polar Motion Derived from the DORIS Space Geodetic Technique Using FFT and SSA Methods" Sensors 20, no. 10: 2823. https://doi.org/10.3390/s20102823
APA StyleKong, Q., Zhang, L., Han, L., Guo, J., Zhang, D., & Fang, W. (2020). Analysis of 25 Years of Polar Motion Derived from the DORIS Space Geodetic Technique Using FFT and SSA Methods. Sensors, 20(10), 2823. https://doi.org/10.3390/s20102823