Optical Camera Communications for IoT–Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter
Abstract
:1. Introduction
2. Proposed RS-Based MIMO-OCC Scheme with Grouped LED Tx
2.1. MIMO-OCC Tx Characterization
2.2. Rolling-Shutter Based MIMO Rx in OCC
2.3. System Overview of MIMO-OCC Using Proposed Multi-Channel Tx Design
3. Experiment Results and Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boccardi, F.; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five disruptive technology directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Aksu, H.; Babun, L.; Conti, M.; Tolomei, G.; Uluagac, A.S. Advertising in the IoT Era: Vision and Challenges. IEEE Commun. Mag. 2018, 56, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Tercero, M.; von Wrycza, P.; Amah, A.; Widmer, J.; Fresia, M.; Frascolla, V.; Vijay, A. 5G Sstems: The mmMAGIC Project Perspective on Use Cases and Challenges between 6–100 GHz. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Doha, Qatar, 29 August 2016; pp. 200–205. [Google Scholar]
- Kashima, T.; Qiu, J.; Shen, H.; Tang, C.; Tian, T.; Wang, X.; Kishiyama, Y. Large-scale massive MIMO field trial for 5G mobile communications system. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 September 2016; pp. 602–603. [Google Scholar]
- Ayyash, M.; Elgala, H.; Khreishah, A.; Jungnickel, V.; Little, T.; Shao, S.; Rahaim, M.; Schulz, D.; Hilt, J.; Freund, R. Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges. IEEE Commun. Mag. 2016, 54, 64–71. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Visible Light Communications. In Optical Wireless Communications; Informa UK Limited: Colchester, UK, 2019; pp. 397–468. [Google Scholar]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications; Informa UK Limited: Colchester, UK, 2019. [Google Scholar]
- Jang, M.J. IEEE 802.15 WPAN 15.7 Amendment-Optical Camera Communications Study Group (SG 7a). Available online: http://www.ieee802.org/15/pub/IEEE%20802_15%20WPAN%2015_7%20Revision1%20Task%20GroupOLD.htm (accessed on 18 November 2019).
- Nguyen, T.; Islam, A.; Hossan, T.; Chowdhury, M.Z. Current Status and Performance Analysis of Optical Camera Communication Technologies for 5G Networks. IEEE Access. 2017, 5, 4574–4594. [Google Scholar] [CrossRef]
- Le, N.T.; Hossain, M.A.; Jang, Y.M. A survey of design and implementation for optical camera communication. Signal Process. Image Commun. 2017, 53, 95–109. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Z. Some practical constraints and solutions for optical camera communication. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190191. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Tian, P.; Xu, Z. Design, and implementation of a real-time CIM-MIMO optical camera communication system. Opt. Express 2016, 24, 24567. [Google Scholar] [CrossRef]
- IEEE Approved Draft Standard for Local and Metropolitan Area Networks—Part 15.7: Short-Range Optical Wireless Communications. In IEEE P802.15.7/D3a, pp. 1–428, 4 December 2018. Available online: https://standards.ieee.org/standard/802_15_7-2018.html (accessed on 23 April 2019).
- Luo, P.; Zhang, M.; Ghassemlooy, Z.; Le Le Minh, H.; Tsai, H.-M.; Tang, X.; Png, L.C.; Han, D. Experimental Demonstration of RGB LED-Based Optical Camera Communications. IEEE Photon. J. 2015, 7, 1–12. [Google Scholar] [CrossRef]
- Rachim, V.P.; Chung, W.-Y. Multilevel Intensity-Modulation for Rolling Shutter-Based Optical Camera Communication. IEEE Photon-Technol. Lett. 2018, 30, 903–906. [Google Scholar] [CrossRef]
- Wang, W.-C.; Chow, C.-W.; Chen, C.-W.; Hsieh, H.-C.; Chen, Y.-T. Beacon Jointed Packet Reconstruction Scheme for Mobile-Phone Based Visible Light Communications Using Rolling Shutter. IEEE Photon. J. 2017, 9, 1–6. [Google Scholar] [CrossRef]
- Yang, Y.; Hao, J.; Luo, J. CeilingTalk: Lightweight Indoor Broadcast Through LED-Camera Communication. IEEE Trans. Mob. Comput. 2017, 16, 3308–3319. [Google Scholar] [CrossRef]
- Hassan, N.B.; Ghassemlooy, Z.; Zvanovec, S.; Biagi, M.; Vegni, A.M.; Zhang, M.; Luo, P. Non-Line-of-Sight MIMO Space-Time Division Multiplexing Visible Light Optical Camera Communications. J. Light Technol. 2019, 37, 2409–2417. [Google Scholar] [CrossRef]
- Hasan, M.K.; Chowdhury, M.Z.; Shahjalal; Nguyen, V.T.; Jang, Y.M. Performance Analysis, and Improvement of Optical Camera Communication. Appl. Sci. 2018, 8, 2527. [Google Scholar] [CrossRef] [Green Version]
- Burgess, P. Adafruit Neopixel Uberguide, WS2812B Datasheet; Philips, The Netherlands, 2019. Available online: https://cdn-learn.adafruit.com/downloads/pdf/adafruit-neopixel-uberguide.pdf (accessed on 13 June 2020).
- Fujihashi, T.; Koike-Akino, T.; Orlik, P.; Watanabe, T. High-Throughput Visual MIMO Systems for Screen-Camera Communications. IEEE Trans. Mob. Comput. 2020, 1. [Google Scholar] [CrossRef]
- Jerkovits, T.; Liva, G.; I Amat, A.G. Improving the Decoding Threshold of Tailbiting Spatially Coupled LDPC Codes by Energy Shaping. IEEE Commun. Lett. 2018, 22, 660–663. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Chen, P.; Cai, G.; Lau, F.C.M.; Liew, S.-C.; Han, G. Outage-Limit-Approaching Channel Coding for Future Wireless Communications: Root-Protograph Low-Density Parity-Check Codes. IEEE Veh. Technol. Mag. 2019, 14, 85–93. [Google Scholar] [CrossRef]
- Elshabrawy, T.; Robert, J. Interleaved Chirp Spreading LoRa-Based Modulation. IEEE Internet Things J. 2019, 6, 3855–3863. [Google Scholar] [CrossRef]
- Shahjalal; Hasan, M.K.; Chowdhury, M.Z.; Jang, Y.M. Smartphone Camera-Based Optical Wireless Communication System: Requirements and Implementation Challenges. Electronics 2019, 8, 913. [Google Scholar] [CrossRef] [Green Version]
- Teli, S.R.; Zvanovec, S.; Ghassemlooy, Z. The first tests of smartphone camera exposure effect on optical camera communication links. In Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL), Graz, Austria, 3–5 July 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Chua, J.B.Y. System and Method for Enhancing Light Emissions from Light Packages by Adjusting the index of Refraction at the Surface of the Encapsulation Material. U.S. Patent 8,089,083, 3 January 2012. [Google Scholar]
- Cahyadi, W.A.; Kim, Y.H.; Chung, Y.H.; Ahn, C.-J. Mobile Phone Camera-Based Indoor Visible Light Communications with Rotation Compensation. IEEE Photon. J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Cahyadi, W.A.; Chung, Y.H. Wide receiver orientation using diffuse reflection in camera-based indoor visible light communication. Opt. Commun. 2019, 431, 19–28. [Google Scholar] [CrossRef]
- Gancarz, J.; Elgala, H.; Little, T.D. Impact of lighting requirements on VLC systems. IEEE Commun. Mag. 2013, 51, 34–41. [Google Scholar] [CrossRef]
- Zafar, F.; Karunatilaka, D.; Parthiban, R. Dimming schemes for visible light communication: The state of research. IEEE Wirel. Commun. 2015, 22, 29–35. [Google Scholar] [CrossRef]
- Pergoloni, S.; Biagi, M.; Cusani, R.; Scarano, G. Space-time multichannel adaptive filtering scheme for VLC color crosstalk equalization. Opt. Express 2018, 26, 19750–19761. [Google Scholar] [CrossRef] [PubMed]
- Ghassemlooy, Z.; Uysal, M.; Khalighi, M.A.; Ribeiro, V.; Moll, F.; Zvanovec, S.; Belmonte, A. An Overview of Optical Wireless Communications; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 1–23. [Google Scholar]
- Le, T.; Le, N.T.; Jang, Y.M.; Thithanhnhan, L.; Nam-Tuan, L.; Min, J.Y. Performance of rolling shutter and global shutter camera in optical camera communications. In Proceedings of the 2015 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 28–30 October 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 124–128. [Google Scholar]
- Thieu, M.D.; Pham, L.; Nguyen, T.; Chowdhury, M.Z. Optical-RoI-Signaling for Vehicular Communications. IEEE Access 2019, 7, 69873–69891. [Google Scholar] [CrossRef]
- Atmel Corporation. 8-bit Microcontroller with 4/8/16/32K Bytes in System Programmable Flash; Atmel Datasheet; Atmel Corporation: San Jose, CA, USA, 2009. [Google Scholar]
- Sony Corporation. IMX219PQHS-C Datasheet; 2014. Available online: https://datasheetspdf.com/pdf/1404029/Sony/IMX219PQH5-C/1 (accessed on 13 June 2020).
- Teli, S.R.; Zvanovec, S.; Ghassemlooy, Z. Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera-based communications. Opt. Express 2019, 27, 24082–24092. [Google Scholar] [CrossRef]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800. [Google Scholar] [CrossRef]
Resolution (pixels) | Frame Rate (fps) | Nvisible (bits) |
---|---|---|
1920 × 1080 | 30 | 8 |
3280 × 2464 | 15 | 22 |
1640 × 1232 | 40 | 10 |
1640 × 922 | 40 | 8 |
1280 × 720 | 90 | 6 |
640 × 480 | 200 | 4 |
Parameter | Value |
---|---|
RaspiCam chip size | 5.09 mm (H) × 4.930 mm (W) Diagonal: 4.60 mm |
RaspiCam resolution | 1920 × 1080 pixels |
Raspberry display size | 7 ” (diagonally) |
Raspberry display resolution | 800 × 400 pixels |
tchip | 2.5 ms |
fs | 400 Hz |
RaspiCam frame rate | 30 fps |
Nrow | 1080 pixels |
Ngroups | 8 LED groups with 8LED/group |
tframe | 0.216 ms |
SS | 200, 400, 600 and 800 µs |
Rd | 3.2 kbps |
L | 20–100 cm |
Number of Neopixels | Ngroups | L (cm) | Nvisible | Data Throughput (kbps) |
---|---|---|---|---|
16 × 16 | 16 | 40–140 | 14 (max)–1 (min) | 3.36 (max)–0.240 (min) |
24 × 24 | 24 | 60–160 | 22–1 | 7.92–0.360 |
32 × 32 | 32 | 80–180 | 28–1 | 13.44–0.480 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teli, S.R.; Matus, V.; Zvanovec, S.; Perez-Jimenez, R.; Vitek, S.; Ghassemlooy, Z. Optical Camera Communications for IoT–Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter. Sensors 2020, 20, 3361. https://doi.org/10.3390/s20123361
Teli SR, Matus V, Zvanovec S, Perez-Jimenez R, Vitek S, Ghassemlooy Z. Optical Camera Communications for IoT–Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter. Sensors. 2020; 20(12):3361. https://doi.org/10.3390/s20123361
Chicago/Turabian StyleTeli, Shivani Rajendra, Vicente Matus, Stanislav Zvanovec, Rafael Perez-Jimenez, Stanislav Vitek, and Zabih Ghassemlooy. 2020. "Optical Camera Communications for IoT–Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter" Sensors 20, no. 12: 3361. https://doi.org/10.3390/s20123361
APA StyleTeli, S. R., Matus, V., Zvanovec, S., Perez-Jimenez, R., Vitek, S., & Ghassemlooy, Z. (2020). Optical Camera Communications for IoT–Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter. Sensors, 20(12), 3361. https://doi.org/10.3390/s20123361