LDPC-Coded CAP with Spatial Diversity for UVLC Systems over Generalized-Gamma Fading Channel
Abstract
:1. Introduction
2. CAP-Based UVLC System
2.1. System Model
2.2. Underwater-Optical-Turbulence Channel
2.3. Selection of LDPC Codes
3. Approximated BER without FEC
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zedini, E.; Oubei, H.M.; Kammoun, A.; Hamdi, M.; Ooi, B.S.; Alouini, M.S. Unified Statistical Channel Model for Turbulence-Induced Fading in Underwater Wireless Optical Communication Systems. IEEE Trans. Commun. 2019, 67, 2893–2907. [Google Scholar] [CrossRef] [Green Version]
- Peppas, K.P.; Boucouvalas, A.C.; Ghassemloy, Z. Performance of underwater optical wireless communication with multi-pulse pulse-position modulation receivers and spatial diversity. IET Optoelectron. 2017, 11, 180–185. [Google Scholar] [CrossRef]
- Jiang, H.; Qiu, H.; He, N.; Popoola, W.O.; Ahmad, Z.U.; Rajbhandari, S. Performance of Spatial Diversity DCO-OFDM in a Weak Turbulence Underwater Visible Light Communication Channel. J. Light. Technol. 2020, 38, 2271–2277. [Google Scholar] [CrossRef]
- Li, C.; Park, K.-H.; Alouini, M.-S. On the use of a direct radiative transfer equation solver for path loss calculation in underwater optical wireless channels. IEEE Commun. Lett. 2015, 4, 561–564. [Google Scholar] [CrossRef] [Green Version]
- Miramirkhani, F.; Uysal, M. Visible light communication channel modeling for underwater environments with blocking and shadowing. IEEE Access 2017, 6, 1082–1090. [Google Scholar] [CrossRef]
- Wang, C.; Yu, H.-Y.; Zhu, Y.-J. A long distance underwater visible light communication system with single photon avalanche diode. IEEE Photon. J. 2016, 8, 7906311. [Google Scholar] [CrossRef]
- Jamali, M.V.; Chizari, A.; Salehi, J.A. Performance analysis of multi-hop underwater wireless optical communication systems. IEEE Photon. Technol. Lett. 2017, 29, 462–465. [Google Scholar] [CrossRef]
- Jamali, M.V.; Salehi, J.A.; Akhoundi, F. Performance Studies of Underwater Wireless Optical Communication Systems with Spatial Diversity: MIMO Scheme. IEEE Trans. Commun. 2017, 65, 1176–1192. [Google Scholar] [CrossRef] [Green Version]
- Navidpour, S.; Uysal, M.; Kavehrad, M. BER Performance of Free-Space Optical Transmission with Spatial Diversity. IEEE Trans. Wirel. Commun. 2007, 6, 2813–2819. [Google Scholar] [CrossRef] [Green Version]
- Oubei, H.M.; Zedini, E.; ElAfandy, R.T.; Kammoun, A.; Abdallah, M.; Ng, T.K.; Ooi, B.S.; Hamdi, M.; Alouini, M.-S. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. Opt. Lett. 2017, 42, 2455–2458. [Google Scholar] [CrossRef]
- Jamali, M.V.; Mirani, A.; Parsay, A.; Abolhassani, B.; Nabavi, P.; Chizari, A.; Salehi, J.A.; Khorramshahi, P.; Abdollahramezani, S. Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations. IEEE Trans. Commun. 2018, 66, 4706–4723. [Google Scholar] [CrossRef]
- Aalo, V.A.; Piboongungon, T.; Iskander, C.D. Bit-error rate of binary digital modulation schemes in generalized-gamma fading channels. IEEE Commun. Lett. 2005, 9, 139–141. [Google Scholar] [CrossRef]
- Djordjevic, I.B.; Vasic, B.; Neifeld, M.A. LDPC coded OFDM over the atmospheric turbulence channel. Opt. Express 2007, 15, 6336. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, S.; Haas, H. Information rate of OFDM-based optical wireless communication systems with nonlinear distortion. J. Light. Technol. 2013, 31, 918–929. [Google Scholar] [CrossRef]
- Anguita, J.; Djordjevic, I.; Neifeld, M.; Vasic, B. Shannon capacities and error-correction codes for optical atmospheric turbulent channels. J. Opt. Netw. 2005, 24, 586–601. [Google Scholar] [CrossRef]
- Sakib, M.N.; Moayedi, M.; Gross, W.J.; Liboiron-Ladouceur, O. 45 Gb/s low complexity optical front-end for soft-decision LDPC decoders. Opt. Express 2012, 20, 18336. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.L.; Ingham, J.D.; Cunningham, D.G.; Penty, R.V.; White, I.H. Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications. J. Light. Technol. 2012, 30, 3273–3280. [Google Scholar] [CrossRef]
- Akande, K.O.; Popoola, W.O. MIMO techniques for carrierless amplitude and phase modulation in visible light communication. IEEE Commun. Lett. 2018, 22, 974–977. [Google Scholar] [CrossRef]
- Stepniak, G.; Maksymiuk, L.; Siuzdak, J. Experimental comparison of PAM, CAP, and DMT modulations in phosphorescent white LED transmission link. IEEE Photon. J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems; IEEE Std 802.16-2009; IEEE: New York, NY, USA, 2009; pp. 1–2080.
- Rajbhandari, S.; McKendry, J.J.; Herrnsdorf, J.; Chun, H.; Faulkner, G.; Haas, H.; Watson, I.M.; Dawson, M.D.; O’Brien, D. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol. 2017, 32, 023001. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; Shi, J. Visible Laser Light Communication Based on LDPC-Coded Multi-Band CAP and Adaptive Modulation. J. Light. Technol. 2019, 37, 1207–1213. [Google Scholar] [CrossRef]
- Dissanayake, S.D.; Armstrong, J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems. J. Light. Technol. 2013, 31, 1063–1072. [Google Scholar] [CrossRef]
- Lu, L.; Ji, X.; Baykal, Y. Wave structure function and spatial coherence radius of plane and spherical waves propagating through oceanic turbulence. Opt. Express 2014, 22, 27112–27122. [Google Scholar] [CrossRef] [PubMed]
- Farwell, N.; Korotkova, O. Intensity and coherence properties of light in oceanic turbulence. Opt. Commun. 2012, 285, 872–875. [Google Scholar] [CrossRef]
- Chen, L.; Krongold, B.; Evans, J. Performance Analysis for Optical OFDM Transmission in Short-Range IM/DD Systems. J. Light. Technol. 2012, 30, 974–983. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press: New York, NY, USA, 2007. [Google Scholar]
- Yuan, J.; Liu, F.; Ye, W.; Huang, S.; Wang, Y. A new coding scheme of QC-LDPC codes for optical transmission systems. Optik (Stuttg.) 2014, 125, 1016–1019. [Google Scholar] [CrossRef]
- Islam, M.R.; Han, Y.S. Cooperative MIMO communication at wireless sensor network: An error correcting code approach. Sensors 2011, 11, 9887–9903. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Zhang, Z.; Zhuang, J.; He, R. High performance gain demodulate system for hybrid fiber-coaxial. Optik (Stuttg.) 2017, 148, 181–186. [Google Scholar] [CrossRef]
- Wiberg, N. Codes and Decoding on General Graphs. Ph.D. Thesis, Linkoping University, Linkoping, Sweden, 1996. [Google Scholar]
- Dimitrov, S.; Sinanovic, S.; Haas, H. Clipping noise in OFDM-based optical wireless communication systems. IEEE Trans. Commun. 2012, 60, 1072–1081. [Google Scholar] [CrossRef]
- Bhargava, V.K. Equal-gain diversity receiver performance in wireless channels. IEEE Trans. Commun. 2000, 48, 1732–1745. [Google Scholar]
- Simon, M.K.; Alouini, M.-S. Digital Communication over Fading Channels—A Unified Approach to Performance Analysis; John Wiley&Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Aalo, V.A.; Efthymoglou, G.P.; Piboongungon, T.; Iskander, C.D. Performance of diversity receivers in generalised gamma fading channels. IET Commun. 2007, 1, 341–347. [Google Scholar] [CrossRef]
- Mathai, A.M.; Saxena, R.K. The H-function with applications in statistics and other disciplines; Wiley Eastern: New Delhi, India; Halsted Press: New York, NY, USA, 1978. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Yilmaz, F.; Alouini, M.S. Product of the powers of generalized Nakagami-m variates and performance of cascaded fading channels. In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–8. [Google Scholar]
Parameters | Z | |||
---|---|---|---|---|
Value | 2 |
Parameter | Value |
---|---|
M | 4, 16 |
Pseudorandom bits length (PRBS) | >217 |
Symbol duration | 4 × 10−8 s |
Roll factor, | 0.15 |
Upsampling factor | 20 |
Carrier frequency: symbol rate × (1 + )/2 | 14.375 MHz |
Normalised DC bias | 3 |
GG-distributed parameters (m, ν) | (1.5,1), (0.5,0.6) |
Scintillation index | 0.2,1.4 |
LDPC code length and rate | 2304, 1/2 |
Diversity order | 1, 2, 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Qiu, H.; He, N.; Zhao, Z.; Popoola, W.; Ahmad, Z.; Rajbhandari, S. LDPC-Coded CAP with Spatial Diversity for UVLC Systems over Generalized-Gamma Fading Channel. Sensors 2020, 20, 3378. https://doi.org/10.3390/s20123378
Jiang H, Qiu H, He N, Zhao Z, Popoola W, Ahmad Z, Rajbhandari S. LDPC-Coded CAP with Spatial Diversity for UVLC Systems over Generalized-Gamma Fading Channel. Sensors. 2020; 20(12):3378. https://doi.org/10.3390/s20123378
Chicago/Turabian StyleJiang, Hongyan, Hongbing Qiu, Ning He, Zhonghua Zhao, Wasiu Popoola, Zahir Ahmad, and Sujan Rajbhandari. 2020. "LDPC-Coded CAP with Spatial Diversity for UVLC Systems over Generalized-Gamma Fading Channel" Sensors 20, no. 12: 3378. https://doi.org/10.3390/s20123378
APA StyleJiang, H., Qiu, H., He, N., Zhao, Z., Popoola, W., Ahmad, Z., & Rajbhandari, S. (2020). LDPC-Coded CAP with Spatial Diversity for UVLC Systems over Generalized-Gamma Fading Channel. Sensors, 20(12), 3378. https://doi.org/10.3390/s20123378