Towards Fingerprint Spoofing Detection in the Terahertz Range
Abstract
:1. Introduction
- Introduction of hardware-based fingerprint anti-spoofing method using the THz TDS technique;
- Investigations of fingerprint presentation attack detection in terahertz time domain spectroscopy;
- THz time domain characterization of various presentation attack instruments (PAIs);
- Two presentation attack detection methods based on:
- (a)
- time–frequency feature analysis;
- (b)
- a deep learning classifier applied to reflectance spectra with a second criterion analysis based on reflected signals in the time domain.
2. Finger Pad Skin Structure
3. Characterization of Samples
4. Experimental Setup
5. Samples—Analyses of Measurement Results
5.1. Signal Processing
5.2. Thick Samples Results
5.3. Thin Samples Results
5.4. Simulations
6. Finger Skin—Analyses of Measurement Results
6.1. Person 1
6.2. Persons 2–6
6.3. Deconvolution-Based Discussion
7. Spoofing Detection Algorithm
7.1. Time–Frequency Features Method
7.2. Deep Learning-Based Method
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethical Statements
References
- Tan, B.; Schuckers, S. Spoofing protection for fingerprint scanner by fusing ridge signal and valley noise. Pattern Recognit. 2010, 43, 2845–2857. [Google Scholar] [CrossRef]
- Sousedik, C.; Busch, C. Presentation attack detection methods for fingerprint recognition systems: A survey. IET Biom. 2014, 3, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Larin, K.V.; Mao, Y.; Flueraru, C.; Almuhtadi, W. Fingerprint Spoof Detection Using Near Infrared Optical Analysis. In Recent Application in Biometrics; Yanged, J., Nanni, L., Eds.; InTech: Rijeka, Croatia, 2011; pp. 54–88. [Google Scholar]
- Nixon, K.A.; Aimale, V.; Rowe, R.K. Spoof Detection Schemes. In Handbook of Biometrics; Jain, A.K., Flynn, P., Ross, A.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 403–423. [Google Scholar]
- Chugh, T.; Cao, K.; Jain, A.K. Fingerprint Spoof Buster: Use of Minutiae-Centered Patches. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2190–2202. [Google Scholar] [CrossRef]
- Uliyan, D.M.; Sadeghi, S.; Jalab, H.A. Anti-spoofing method for fingerprint recognition using patch based deep learning machine. Eng. Sci. Technol. Int. J. 2020, 23, 264–273. [Google Scholar] [CrossRef]
- Xia, Z.; Yuan, C.; Lv, R.; Sun, X.; Xiong, N.N.; Shi, Y.-Q. A Novel Weber Local Binary Descriptor for Fingerprint Liveness Detection. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1526–1536. [Google Scholar] [CrossRef]
- González-Soler, L.J.; Gomez-Barrero, M.; Chacng, L.; Pérez-Suárez, A.; Busch, C. Fingerprint Presentation Attack Detection Based on Local Features Encoding for Unknown Attacks. arXiv 2019, arXiv:1908.10163. [Google Scholar]
- Nogueira, R.F.; Lotufo, R.; Machado, R.C. Fingerprint Liveness Detection Using Convolutional Neural Networks. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1206–1213. [Google Scholar] [CrossRef]
- Jang, H.-U.; Choi, H.-Y.; Kim, D.; Son, J.; Lee, H.-K. Fingerprint Spoof Detection Using Contrast Enhancement and Convolutional Neural Networks. In Proceedings of the Lecture Notes in Electrical Engineering; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2017; Volume 424, pp. 331–338. [Google Scholar]
- Chugh, T.; Cao, K.; Jain, A.K. Fingerprint spoof detection using minutiae-based local patches. In Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 581–589. [Google Scholar]
- Pala, F.; Bhanu, B. Deep Triplet Embedding Representations for Liveness Detection. In Support Vector Machines for Pattern Classification; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2017; pp. 287–307. [Google Scholar]
- Tolosana, R.; Gomez-Barrero, M.; Kolberg, J.; Morales, A.; Busch, C.; Ortega-Garcia, J. Towards Fingerprint Presentation Attack Detection Based on Convolutional Neural Networks and Short Wave Infrared Imaging. In Proceedings of the 2018 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 26–28 September 2018; pp. 1–5. [Google Scholar]
- Rattani, A.; Scheirer, W.J.; Ross, A. Open Set Fingerprint Spoof Detection Across Novel Fabrication Materials. IEEE Trans. Inf. Forensics Secur. 2015, 10, 2447–2460. [Google Scholar] [CrossRef]
- Chugh, T.; Jain, A.K. Fingerprint Presentation Attack Detection: Generalization and Efficiency. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–8. [Google Scholar]
- Chugh, T.; Jain, A.K. Fingerprint Spoof Generalization. arXiv 2019, arXiv:1912.02710. [Google Scholar]
- Zhang, Y.; Shi, D.; Zhan, X.; Cao, D.; Zhu, K.; Li, Z. Slim-ResCNN: A Deep Residual Convolutional Neural Network for Fingerprint Liveness Detection. IEEE Access 2019, 7, 91476–91487. [Google Scholar] [CrossRef]
- Chugh, T.; Jain, A.K. Fingerprint Spoof Detector Generalization. IEEE Trans. Inf. Forensics Secur. 2020, 1. [Google Scholar] [CrossRef]
- Chugh, T.; Cao, K.; Jain, A. Fingerprint Spoof Buster. arXiv 2017, arXiv:1712.04489. [Google Scholar]
- Chugh, T.; Jain, A.K. OCT Fingerprints: Resilience to Presentation Attacks; Cornell University: Ithaca, NY, USA, 2019. [Google Scholar]
- Nixon, K.A.; Rowe, R.K. Multispectral fingerprint imaging for spoof detection. Biom. Technol. Hum. Identif. II 2005, 5779, 214–226. [Google Scholar] [CrossRef]
- Rowe, R.K.; Nixon, K.A.; Butler, P.W. Multispectral Fingerprint Image Acquisition. Adv. Biom. 2008, 5, 3–23. [Google Scholar] [CrossRef]
- Maceo, A.V. Qualitative Assessment of Skin Deformation: A Pilot Study. J. Forensics Identif. 2009, 390, 390–440. [Google Scholar]
- Engelsma, J.J.; Cao, K.; Jain, A.K. RaspiReader: Open Source Fingerprint Reader. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2511–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agassy, M.; Castro, B.; Lerner, A.; Rotem, G.; Galili, L.; Altman, N. Liveness and Spoof Detection for Ultrasonic Fingerprint Sensors. U.S. Patent No. 10,262,188, 16 April 2019. [Google Scholar]
- Orru, G.; Casula, R.; Tuveri, P.; Bazzoni, C.; Dessalvi, G.; Micheletto, M.; Ghiani, L.; Marcialis, G.L. LivDet in Action—Fingerprint Liveness Detection Competition 2019. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mura, V.; Orrù, G.; Casula, R.; Sibiriu, A.; Loi, G.; Tuveri, P.; Ghiani, L.; Marcialis, G.L. LivDet 2017 Fingerprint Liveness Detection Competition 2017. In Proceedings of the 2018 International Conference on Biometrics (ICB), Redondo Beach, CA, USA, 22–25 October 2018; pp. 297–302. [Google Scholar]
- Yambay, D.A.; Ghiani, L.; Marcialis, G.L.; Roli, F.; Schuckers, S. Review of Fingerprint Presentation Attack Detection Competitions. In Support Vector Machines for Pattern Classification; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2019; pp. 109–131. [Google Scholar]
- Ghiani, L.; Marcialis, G.L.; Roli, F. Fingerprint liveness detection by local phase quantization. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 537–540. [Google Scholar]
- Kemp, M.C. Explosives Detection by Terahertz Spectroscopy—A Bridge Too Far? IEEE Trans. Terahertz Sci. Technol. 2011, 1, 282–292. [Google Scholar] [CrossRef]
- Kowalski, M.; Kastek, M. Comparative studies of passive imaging in terahertz and mid-wavelength infrared ranges for object detection. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1. [Google Scholar] [CrossRef]
- Kowalski, M. Real-time concealed object detection and recognition in passive imaging at 250 GHz. Appl. Opt. 2019, 58, 3134–3140. [Google Scholar] [CrossRef]
- Lopato, P.; Chady, T. Terahertz detection and identification of defects in layered polymer composites and composite coatings. Nondestruct. Test. Eval. 2013, 28, 28–43. [Google Scholar] [CrossRef]
- O’Hara, J.F.; Ekin, S.; Choi, W.; Song, I. A Perspective on Terahertz Next-Generation Wireless Communications. Technologies 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Stantchev, R.I.; Sun, Q.; Chiu, T.-W.; Ahuja, A.T.; MacPherson, E. THz in vivo measurements: The effects of pressure on skin reflectivity. Biomed. Opt. Express 2018, 9, 6467–6476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, D.B.; Li, W.; Taylor, Z.D.; Grundfest, W.; Brown, E.R. Stratified Media Model for Terahertz Reflectometry of the Skin. IEEE Sens. J. 2010, 11, 1253–1262. [Google Scholar] [CrossRef]
- Tripathi, S.R.; Miyata, E.; Ben Ishai, P.; Kawase, K. Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region. Sci. Rep. 2015, 5, 9071. [Google Scholar] [CrossRef]
- Bin Ji, Y.; Lee, E.S.; Kim, S.-H.; Son, J.-H.; Jeon, T.I. A miniaturized fiber-coupled terahertz endoscope system. Opt. Express 2009, 17, 17082–17087. [Google Scholar] [CrossRef]
- Hernandez-Cardoso, G.G.; Rojas-Landeros, S.C.; Alfaro-Gomez, M.; Hernandez-Serrano, A.I.; Salas-Gutierrez, I.; Lemus-Bedolla, E.; Castillo-Guzman, A.R.; Lopez-Lemus, H.L.; Castro-Camus, E. Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept. Sci. Rep. 2017, 7, 42124. [Google Scholar] [CrossRef] [Green Version]
- Ozheredov, I.; Prokopchuk, M.; Mischenko, M.; Safonova, T.; Solyankin, P.; Larichev, A.; Angeluts, A.; Balakin, A.V.; Shkurinov, A. In Vivo THz sensing of the cornea of the eye. Laser Phys. Lett. 2018, 15, 055601. [Google Scholar] [CrossRef]
- Ashworth, P.C.; MacPherson, E.; Provenzano, E.; Pinder, S.E.; Purushotham, A.D.; Pepper, M.; Wallace, V.P. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt. Express 2009, 17, 12444–12454. [Google Scholar] [CrossRef]
- Joseph, C.S.; Patel, R.; Neel, V.A.; Giles, R.H.; Yaroslavsky, A.N. Imaging of Ex Vivo nonmelanoma skin cancers in the optical and terahertz spectral regions Optical and Terahertz skin cancers imaging. J. Biophotonics 2012, 7, 295–303. [Google Scholar] [CrossRef]
- Theofanopoulos, P.C.; Trichopoulos, G.C. A Novel Fingerprint Scanning Method Using Terahertz Imaging. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 2463–2464. [Google Scholar] [CrossRef]
- Coutaz, J.-L.; Garet, F.; Wallace, V.P. Principles of Terahertz Time-Domain Spectroscopy; Jenny Stanford Publishing: New York, NY, USA, 2018. [Google Scholar]
- Barnes, J.G.; Benningfield, D. Anatomy and Physiology of Adult Friction Ridge Skin; National Institute of Justice/NCJRS: Rockville, MD, USA, 2011.
- Hicklin, R.A.; Bjorn, V.; Soutar, C.; Irsch, K.; Guyton, D.L.; Burrows, A.M.; Cohn, J.F.; Kumar, A.; Mundra, T.S.; Kumar, A.; et al. Anatomy of Friction Ridge Skin. In Encyclopedia of Biometrics; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2009; pp. 23–28. [Google Scholar]
- Liu, X.; Gad, D.; Lu, Z.; Lewis, R.; Carré, M.; Matcher, S. The contributions of skin structural properties to the friction of human finger-pads. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2015, 229, 294–311. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Z.; Heo, S.; Lee, J.; Na, K.; Jin, H.B.; Jung, S.; Park, K.; Kim, J.J.; Bien, F. On-Display Transparent Half-Diamond Pattern Capacitive Fingerprint Sensor Compatible With AMOLED Display. IEEE Sens. J. 2016, 16, 8124–8131. [Google Scholar] [CrossRef]
- Song, K.-H.; Choi, J.; Chun, J.-H. A Method for Enhancing the Sensing Distance of a Fingerprint Sensor. Sensors 2017, 17, 2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pałka, N.; Rybak, A.; Czerwinska, E.; Florkowski, M. Terahertz Detection of Wavelength-Size Metal Particles in Pressboard Samples. IEEE Trans. Terahertz Sci. Technol. 2015, 6, 99–107. [Google Scholar] [CrossRef]
- Wilmink, G.J.; Ibey, B.L.; Tongue, T.; Schulkin, B.; Laman, N.; Peralta, X.; Roth, C.C.; Cerna, C.Z.; Rivest, B.D.; Grundt, J.E.; et al. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. J. Biomed. Opt. 2011, 16, 047006. [Google Scholar] [CrossRef]
- Davies, C.L.; Patel, J.; Xia, C.Q.; Herz, L.M.; Johnston, M.B. Temperature-Dependent Refractive Index of Quartz at Terahertz Frequencies. J. Infrared Millim. Terahertz Waves 2018, 39, 1236–1248. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, C.; Driggers, R. Encyclopedia of Optical and Photonic Engineering—Five Volume Set, 2nd ed.; Taylor and Francis Group CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Walker, G.C.; Bowen, J.; Labaune, J.; Jackson, J.B.; Hadjiloucas, S.; Roberts, J.; Mourou, G.; Menu, M. Terahertz deconvolution. Opt. Express 2012, 20, 27230. [Google Scholar] [CrossRef]
- Warner, R.R.; Myers, M.C.; Taylor, D.A.; Warner, M.C.M.R.R. Electron Probe Analysis of Human Skin: Determination of the Water Concentration Profile. J. Investig. Dermatol. 1988, 90, 218–224. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Name | Abbr. | Material/Manufacturer | Thickness [mm] |
---|---|---|---|
Silicone1 | S1 | Silicone mask cover; Litfly, China | 0.5 |
Silicone2 | S2 | Congealed sanitary silicone; Den Braven, UK | 3 |
Latex1 | L1 | Latex glove | 0.5 |
Latex2 | L2 | Congealed liquid latex; Smiffys, UK | 3 |
Plasticine1 | P1 | Ordinary plasticine from a stationery store | 0.5 |
Plasticine2 | P2 | 3 | |
Gelatin1 | G1 | Homemade congealed mixture of gelatin, water and glycerin | 1 |
Gelatin2 | G2 | 3 | |
Gelatin3 | G3 | As above, fingerprinted | 2–3 |
Play-Doh1 | D1 | Mixture of flour, water, salt, borax and mineral oil; Hasbro, USA | 0.5 |
Play-Doh2 | D2 | 3 |
Samples | Group I (%) 1 | Group II (%) 2 | Genuine (%) 2 | Total (%) 3 |
---|---|---|---|---|
TDR | 100.0 | 86.9 | 97.9 | 87.9 |
FDR | 0.0 | 10.5 | 2.1 | 3.9 |
Validation Method Samples | Five-Fold Cross-Validation | Cross-Material Validation | |||
---|---|---|---|---|---|
ResNet-18 | ResNet-18 and q-Coefficient | ||||
All (%) | Group I (%) | Group II (%) | Group I (%) | Group II (%) | |
TDR | 98.8 ± 1.2 | 55.8 | 93.2 | 98.7 | 93.2 |
FDR | 1.2 ± 1.2 | 1.2 | 3.9 | 1.3 | 3.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pałka, N.; Kowalski, M. Towards Fingerprint Spoofing Detection in the Terahertz Range. Sensors 2020, 20, 3379. https://doi.org/10.3390/s20123379
Pałka N, Kowalski M. Towards Fingerprint Spoofing Detection in the Terahertz Range. Sensors. 2020; 20(12):3379. https://doi.org/10.3390/s20123379
Chicago/Turabian StylePałka, Norbert, and Marcin Kowalski. 2020. "Towards Fingerprint Spoofing Detection in the Terahertz Range" Sensors 20, no. 12: 3379. https://doi.org/10.3390/s20123379
APA StylePałka, N., & Kowalski, M. (2020). Towards Fingerprint Spoofing Detection in the Terahertz Range. Sensors, 20(12), 3379. https://doi.org/10.3390/s20123379