Boxer Underwear Incorporating Textile Moisture Sensor to Prevent Nocturnal Enuresis
Abstract
:1. Introduction
2. Materials
2.1. Description of the System
2.2. Leakage Sensors
- The space between the two vertical lines, made of cotton fabric, which determines the sensor reactivity. Four different separating distances were tested (2, 3, 4, and 5 cm). The sensors consisting of only vertical lines are referred to as Type 3 sensor (see Figure 2a).
- The presence of horizontal lines which are supposed to improve the speed detection by reducing the gap between the two conductive electrodes. This type of sensors is referred to as Type 2 sensor (see Figure 2a).
- A more elaborate knitted structure was considered (see Figure 2b). Indeed, on the front side, it creates a sort of ditch, around the horizontal lines, which should improve the water absorption. At the backside, the flanges prevent any short circuit between horizontal tracks. Besides, the conductivity of the horizontals tracks is improved as the creases create extra contacts. This type of sensors is referred to as Type 1.
2.3. Underwear Manufacturing
3. Methods
3.1. Electrical Characterization of the Sensors
3.2. Ability to Detect and Reactivity of the Patterns
- Method 1 consists in pouring five drops of artificial urine, with a micropipette, at the top of the sensors (between the higher horizontal lines) and record the detection speed if the sensors can detect leakage. Originally, the conductive liquid was supposed to be placed in the middle of the sensors but stainless-steel sensors showed very poor results, thus it was changed to the top.
- Method 2 consists in continuously pouring drops of artificial urine, at a constant flow, with a burette until leakage is detected.
3.3. Withstanding to Machine Washing
3.4. Corrosion Resistance to Urine
3.5. Corrosion Resistance to Urine When an Electrical Current Is Flowing
3.6. Sensor’s Performances under Different Wearing Conditions
4. Results and Discussion
4.1. Electrical Properties
4.2. Ability and Reactivity of the Sensors
4.3. Withstanding to Washing
4.4. Corrosion Resistance to Urine
4.5. Corrosion Resistance to Urine When Submitted to an Electrical Current
4.6. Sensor’s Performances under Different Wearing Conditions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nevéus, T.; Von Gontard, A.; Hoebeke, P.; Hjälmås, K.; Bauer, S.; Bower, W.; Jørgensen, T.M.; Rittig, S.; Walle, J.V.; Yeung, C.-K.; et al. The Standardization of Terminology of Lower Urinary Tract Function in Children and Adolescents: Report from the Standardisation Committee of the International Children’s Continence Society. J. Urol. 2006, 176, 314–324. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wen, Y.B.; Shang, X.P.; Wang, Y.H.; Li, Y.W.; Li, T.F.; Li, S.L.; Yang, J.; Liu, Y.J.; Lou, X.P.; et al. The influence of delay elimination communication on the prevalence of primary nocturnal enuresis—A survey from Mainland China. Neurourol. Urodyn. 2019, 38, 1423–1429. [Google Scholar] [CrossRef]
- Shah, S.; Jafri, R.Z.; Mobin, K.; Mirza, R.; Nanji, K.; Jahangir, F.; Patel, S.J.; Ejaz, M.S.; Qaiser, I.; Iftikhar, H.; et al. Frequency and features of nocturnal enuresis in Pakistani children aged 5 to 16 years based on ICCS criteria: A multi-center cross-sectional study from Karachi, Pakistan. BMC Fam. Pract. 2018, 19, 198. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.J.; Golding, J.; Northstone, K. Nocturnal enuresis at 7.5 years old: Prevalence and analysis of clinical signs. BJU Int. 2005, 96, 404–410. [Google Scholar] [CrossRef]
- Kiddoo, D.A. Nocturnal enuresis. CMAJ 2012, 184, 908–911. [Google Scholar] [CrossRef] [Green Version]
- Shreeram, S.; He, J.-P.; Kalaydjian, A.; Brothers, S.; Merikangas, K.R. Prevalence of Enuresis and Its Association with Attention-Deficit/Hyperactivity Disorder Among U.S. Children: Results from a Nationally Representative Study. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.J.; Holland, P. The Three Systems: A Conceptual Way of Understanding Nocturnal Enuresis. Scand. J. Urol. Nephrol. 2000, 34, 270–277. [Google Scholar] [CrossRef]
- Nevéus, T. The role of sleep and arousal in nocturnal enuresis. Acta Paediatr. 2007, 92, 1118–1123. [Google Scholar] [CrossRef]
- Wolfish, N.; Pivik, R.; Busby, K. Elevated sleep arousal thresholds in enuretic boys: Clinical implications. Acta Paediatr. 1997, 86, 381–384. [Google Scholar] [CrossRef]
- Forsythe, W.I.; Redmond, A. Enuresis and spontaneous cure rate: Study of 1129 enuretics. Arch. Dis. Child. 1974, 49, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Jönson Ring, I.; Nevéus, T.; Markström, A.; Arnrup, K.; Bazargani, F. Nocturnal enuresis impaired children’s quality of life and friendships. Acta Paediatr. 2017, 106, 806–811. [Google Scholar] [CrossRef]
- Roccella, M.; Smirni, D.; Smirni, P.; Precenzano, F.; Operto, F.F.; Lanzara, V.; Quatrosi, G.; Carotenuto, M. Parental Stress and Parental Ratings of Behavioral Problems of Enuretic Children. Front. Neurol. 2019, 10, 1054. [Google Scholar] [CrossRef]
- Caldwell, P.H.; Nankivell, G.; Sureshkumar, P. Simple behavioural interventions for nocturnal enuresis in children. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Glazener, C.; Evans, J.; Peto, R. Alarm interventions for nocturnal enuresis in children. Evid.-Based Child Health Cochrane Rev. J. 2006, 1, 9–97. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Qureshi, S.F.; Allaithy, A.; Mahfouz, T.A. Nocturnal Enuresis: A Synopsis of Behavioral and Pharmacological Management. Sleep Hypn. Int. J. 2018, 21, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Barroso, U.; De Azevedo, A.R.; Cabral, M.; Veiga, M.L.; Braga, A.A.N.M. Percutaneous electrical stimulation for overactive bladder in children: A pilot study. J. Pediatr. Urol. 2019, 15, 38.e1–38.e5. [Google Scholar] [CrossRef] [Green Version]
- Alsharnoubi, J.; Sabbour, A.A.; Shoukry, A.I.; Abdelazeem, A.M. Nocturnal enuresis in children between laser acupuncture and medical treatment: A comparative study. Lasers Med. Sci. 2017, 32, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.C.-H.; Yang, S.S.-D.; Austin, P.F.; Chang, S.-J. Systematic Review and Meta-analysis of Alarm versus Desmopressin Therapy for Pediatric Monosymptomatic Enuresis. Sci. Rep. 2018, 8, 16755. [Google Scholar] [CrossRef]
- Professionals, S.-O. EAU Guidelines: Paediatric Urology. Available online: https://uroweb.org/guideline/paediatric-urology/#6 (accessed on 28 April 2020).
- Butler, R.J.; Holland, P.; Gasson, S.; Norfolk, S.; Houghton, L.; Penney, M. Exploring potential mechanisms in alarm treatment for primary nocturnal enuresis. Scand. J. Urol. Nephrol. 2007, 41, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Mowrer, O.H.; Mowrer, W.M. Enuresis—A method for its study and treatment. Am. J. Orthopsychiatry 1938, 8, 436–459. [Google Scholar] [CrossRef]
- Oguz, U.; Sarikaya, S.; Ozyuvali, E.; Senocak, C.; Halis, F.; Ciftci, M.; Yildirim, Y.E.; Bozkurt, O.F. Family compliance with the use of alarm devices in the treatment of monosymptomatic nocturnal enuresis. Turk. J. Urol. 2014, 40, 52–55. [Google Scholar] [CrossRef]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Pereira, T.; Silva, P.; Carvalho, H.; Carvalho, M. Textile moisture sensor matrix for monitoring of disabled and bed-rest patients. In Proceedings of the 2011 IEEE EUROCON—International Conference on Computer as a Tool, Lisbon, Portugal, 27–29 April 2011; pp. 1–4. [Google Scholar]
- Panapoy, M.; Singsang, W.; Ksapabutr, B. Electrically conductive poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate)/polyacrylonitrile fabrics for humidity sensors. Phys. Scr. 2010, 139, 014056. [Google Scholar] [CrossRef]
- Zhou, G.; Byun, J.-H.; Oh, Y.; Jung, B.-M.; Cha, H.-J.; Seong, D.-G.; Um, M.-K.; Hyun, S.; Chou, T.-W. Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments. ACS Appl. Mater. Interfaces 2017, 9, 4788–4797. [Google Scholar] [CrossRef]
- Weremczuk, J.; Tarapata, G.; Jachowicz, R. Humidity Sensor Printed on Textile with Use of Ink-Jet Technology. Procedia Eng. 2012, 47, 1366–1369. [Google Scholar] [CrossRef] [Green Version]
- Kinkeldei, T.; Mattana, G.; Leuenberger, D.; Ataman, C.; Lopez, F.M.; Quintero, A.V.; Briand, D.; Nisato, G.; De Rooij, N.F.; Tröster, G. Feasibility of Printing Woven Humidity and Temperature Sensors for the Integration into Electronic Textiles. Adv. Sci. Technol. 2012, 80, 77–82. [Google Scholar] [CrossRef]
- McColl, D.; Cartlidge, B.; Connolly, P. Real-time monitoring of moisture levels in wound dressings in vitro: An experimental study. Int. J. Surg. 2007, 5, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Parkova, I.; Vališevskis, A.; Briedis, U.; Vilumsone, A. Design of Textile Moisture Sensor for Enuresis Alarm System. Rigas Teh. Univ. Zinat. Raksti 2012, 7, 44. [Google Scholar]
- Parkova, I. Woven Textile Moisture Sensor for Enuresis Alarm Treatment. Key Eng. Mater. 2014, 604, 146–149. [Google Scholar] [CrossRef]
- Fernandes, B.; Gaydecki, P.; Jowitt, F.; Van Den Heuvel, E. Urinary Incontinence: A Vibration Alert System for Detecting Pad Overflow. Assist. Technol. 2011, 23, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Briedis, U.; Valisevskis, A.; Grecka, M. Development of a Smart Garment Prototype with Enuresis Alarm Using an Embroidery-machine-based Technique for the Integration of Electronic Components. Procedia Comput. Sci. 2017, 104, 369–374. [Google Scholar] [CrossRef]
- Smith, G.A.; Chounthirath, T.; Splaingard, M. Do Sleeping Children Respond Better to a Smoke Alarm That Uses Their Mother’s Voice? Acad. Pediatr. 2020, 20, 319–326. [Google Scholar] [CrossRef]
- Van Kampen, M.; Bogaert, G.; Feys, H.; Baert, L.; De Raeymaeker, I.; De Weerdt, W. High initial efficacy of full-spectrum therapy for nocturnal enuresis in children and adolescents: Efficacy of full-spectrum therapy for nocturnal enuresis. BJU Int. 2002, 90, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Luis, F.; Abdala, S.; Dévora, S.; Benjumea, D.; Martín-Herrera, D. Electrical conductivity measurements of urine as a new simplified method to evaluate the diuretic activity of medicinal plants. J. Ethnopharmacol. 2014, 151, 1019–1022. [Google Scholar] [CrossRef]
- Fazil Marickar, Y.M. Electrical conductivity and total dissolved solids in urine. Urol. Res. 2010, 38, 233–235. [Google Scholar] [CrossRef]
- Schlebusch, T.; Nienke, S.; Leonhardt, S.; Walter, M. Bladder volume estimation from electrical impedance tomography. Physiol. Meas. 2014, 35, 1813–1823. [Google Scholar] [CrossRef]
- Gaubert, V.; Gidik, H.; Bodart, N.; Koncar, V. Investigating the Impact of Washing Cycles on Silver-Plated Textile Electrodes: A Complete Study. Sensors 2020, 20, 1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foo, E.W.; Pettys-Baker, R.M.; Sullivan, S.; Dunne, L.E. Bi-metallic stitched e-textile sensors for sensing salinized liquids. In Proceedings of the 2017 ACM International Symposium on Wearable Computers—ISWC ’17, Maui, HI, USA, 11–15 September 2017; ACM Press: New York, NY, USA, 2017; pp. 34–37. [Google Scholar]
- Loto, C.A. Environmental surface degradation of galvanised and mild steels in cattle and poultry wastes and urea solution. Int. J. Phys. Sci. 2011, 6, 3074–3081. [Google Scholar]
- Kawase, T.; Sekoguchi, S.; Fuj, T.; Minagawa, M. Spreading of Liquids in Textile Assemblies Part I: Capillary Spreading of Liquids. Text. Res. J. 1986, 56, 409–414. [Google Scholar] [CrossRef]
- Kissa, E. Capillary sorption in fibrous assemblies. J. Colloid Interface Sci. 1981, 83, 265–272. [Google Scholar] [CrossRef]
- Birss, V.I.; Smith, C.K. The anodic behavior of silver in chloride solutions—I. The formation and reduction of thin silver chloride films. Electrochim. Acta 1987, 32, 259–268. [Google Scholar] [CrossRef]
- Liu, G.; Alomari, M.; Sahin, B.; Snelgrove, S.E.; Edwards, J.; Mellinger, A.; Kaya, T. Real-time sweat analysis via alternating current conductivity of artificial and human sweat. Appl. Phys. Lett. 2015, 106, 133702. [Google Scholar] [CrossRef]
- Licht, T.S.; Stern, M.; Shwachman, H. Measurement of the Electrical Conductivity of Sweat. Clin. Chem. 1957, 3, 37–48. [Google Scholar] [CrossRef] [PubMed]
Yarn | Metal | Thickness | Composition | Resistance | Reference |
---|---|---|---|---|---|
A | Silver (Ag) | 78 dtex/34 f | Silver 20%/Polyamide 80% | <6 Ω/cm | 30700341W |
B | Stainless Steel (SS) | 200 dtex | Stainless Steel 30%/ | 25 Ω/cm | 9002676 |
Polyester 70% | |||||
C | Stainless Steel (SS) | 200 dtex | Stainless Steel 20%/ | 40 Ω/cm | 9031166 |
Cotton 80% |
Electrical Linear Resistance (Ω/cm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Vertical Lines | Horizontal Lines | ||||||||
Type 1 | SD | Types 2/3 | SD | Type 1 | SD | Type 2 | SD | ||
Yarn A | Extra | 3.58 | 0.26 | 2.63 | 0.16 | 5.08 | 0.42 | 5.51 | 0.96 |
(Silver) | Intra | 3.29 | 0.17 | 2.61 | 0.06 | 4.45 | 0.15 | 4.85 | 0.15 |
Yarn B | Extra | 4.06 × 107 | 5.75 × 106 | 3.74 × 107 | 8.51 × 106 | 8.26 × 102 | 2.75 × 102 | 1.30 × 103 | 6.73 × 102 |
(SS1) | Intra | 3.09 × 107 | 7.60 × 106 | 3.68 × 107 | 7.72 × 106 | 1.08 × 103 | 3.73 × 102 | 9.85 × 102 | 2.75 × 102 |
Yarn C | Extra | 4.14 × 107 | 8.36 × 106 | 4.55 × 107 | 1.14 × 107 | 6.22 × 104 | 8.98 × 104 | 4.21 × 104 | 2.13 × 104 |
(SS2) | Intra | 3.87 × 107 | 1.03 × 107 | 4.53 × 107 | 1.51 × 107 | 5.69 × 104 | 1.66 × 104 | 7.03 × 104 | 9.98 × 103 |
Detection Speed (s) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type 1 (Tight Comb) | Type 2 (Comb) | Type 3 (Lines) | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
M1 | Ag | 2.4 ± 0.5 | 3.0 ± 0.7 | 3.6 ± 0.5 | 3.7 ± 1.3 | 6.0 ± 2.1 | 13.4 ± 5.2 | 14.2 ± 8.0 | 24.0 ± 10.7 | 6.0 ± 2.5 | 32.8 ± 12.0 | - | - |
SS | 7.2 ± 1.5 | 9.2 ± 3.4 | 6.6 ± 1.9 | 6.0 ± 2.5 | 12.6 ± 3.7 | 91.8 ± 75.3 | - | - | 12.4 ± 4.8 | - | - | - | |
M2 | Ag | 2.0 | 2.3 ± 0.6 | 3.0 | 3.3 ± 0.6 | 6.3 ± 0.6 | 11.6 ± 0.6 | 11.6 ± 0.6 | 12.3 ± 1.5 | 6.3 ± 0.6 | 13.3 ± 3.5 | 22.6 ± 6.5 | 30.6 ± 11.5 |
SS | 5.6 ± 1.5 | 6 ± 2.0 | 5.6 ± 1.5 | 5.6 ± 2.1 | 9.7 ± 2.0 | 19.6 ± 10 | 25.3 ± 14.6 | 23 ± 9.8 | 8.3 ± 1.5 | 18.3 ± 7.0 | 30.3 ± 13.6 | 42 ± 26.0 |
Resistance (Ω) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type 1 (Tight Comb) | Type 2 (Comb) | Type 3 (Lines) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Ag | 1.2 × 103 | 1.5 × 103 | 1.6 × 103 | 1.9 × 103 | 2.0 × 103 | 2.8 × 103 | 2.5 × 103 | 3.2 × 103 | 1.9 × 103 | 1.0 × 104 | 1.3 × 104 | 1.52 × 104 |
SS | 2.5 × 107 | 3.5 × 107 | 4.0 × 107 | 4.2 × 107 | 3.3 × 107 | 4.6 × 107 | 2.5 × 107 | 5.0 × 107 | 2.9 × 107 | 4.8 × 107 | 5.9 × 107 | 6.36 × 107 |
Silver Yarn | Stainless Steel | |||||||
---|---|---|---|---|---|---|---|---|
Vertical Lines | Horizontal Lines | Horizontal Lines | ||||||
Type 1 | Type 2/3 | Type 1 | Type 2/3 | Type 1 | SD | Type 2/3 | SD | |
Réf | 19.7 ± 0.7 | 31.6 ± 0.9 | 11.1 ± 1.6 | 12.1 ± 1.2 | 1.08× 103 | 4.25 × 102 | 9.80× 102 | 3.32 × 102 |
5 washes | 27.7 ± 1.0 | 31.9 ± 1.5 | 10.6 ± 3.2 | 9.3 ± 1.5 | 1.89× 103 | 9.23 × 102 | 1.60× 104 | 1.55 × 104 |
10 washes | 22.8 ± 1.7 | 30.9 ± 2.1 | 10.8 ± 2.9 | 7.8 ± 1.5 | 7.69× 103 | 8.66 × 103 | 2.47× 104 | 1.80 × 104 |
15 washes | 31.9 ± 2.1 | 38.2 ± 3.5 | 11.5 ± 4.3 | 9.5 ± 1.8 | 1.14× 104 | 4.37 × 103 | 4.55× 104 | 2.56 × 104 |
20 washes | 29.2 ± 1.9 | 39.5 ± 3.6 | 14.4 ± 4.6 | 9.9 ± 2.3 | 1.06× 104 | 1.76 × 104 | 6.69× 104 | 2.35 × 104 |
Resistance (Ω) | ||||||
---|---|---|---|---|---|---|
Lines | Sensor | Ref | 20 h | 40 h | 60 h | |
Ag | Vertical | 9 | 31.0 ± 0.51 | 47.1 ± 0.68 | 71.1 ± 0.45 | 81.8 ± 1.84 |
4 | 21.4 ± 1.84 | 41.5 ± 0.64 | 64.2 ± 0.96 | 74.1 ± 2.24 | ||
Horizontal | 4 | 14.3 ± 1.05 | 21.4 ± 1.68 | 27.6 ± 1.80 | 32.3 ± 1.44 | |
SS | 4 | 726.2 ± 134.5 | 878.5 ± 79.5 | 1140 ± 271.6 | 1159 ± 224.1 |
Silver | Stainless Steel | |||||
---|---|---|---|---|---|---|
Resistance (Ω) | ||||||
Vertical Lines | Horizontal Lines | |||||
Time (min) | + | - | + | - | + | - |
0 (ref) | 19.7 ± 1.0 | 20.2 ± 0.8 | 14.6 ± 0.6 | 13.4 ± 0.5 | 604 ± 104 | 622 ± 172 |
1 | 41.8 ± 0.8 | 34.6 ± 0.7 | 29.9 ± 6.9 | 16.01 ± 1.1 | 571 ± 221 | 703 ± 124 |
2 | 46.3 ± 1.2 | 32.4 ± 0.9 | 37.6 ± 5.3 | 18.3 ± 1.9 | ||
3 | 63.7 ± 1.6 | 31.4 ± 0.9 | 75.43 ± 18.2 | 20.6 ± 1.3 | ||
5 | 72.4 ± 2.6 | 38.88 ± 1.0 | 220.32 ± 121.8 | 25.7 ± 3.6 | 836.6 ± 368 | 646 ± 178 |
10 | 99.7 ± 3.8 | 29.7 ± 1.45 | - | 18.6 ± 2.9 | 1610 ± 310 | 1370 ± 287 |
30 | 181.0 ± 11.5 | 29.0 ± 1.9 | - | 15.4 ± 2.1 | 1876 ± 342 | 1568 ± 267 |
60 | - | 36.7 ± 0.6 | - | 22.2 ± 1.2 | 2098 ± 756 | 1888 ± 545 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaubert, V.; Gidik, H.; Koncar, V. Boxer Underwear Incorporating Textile Moisture Sensor to Prevent Nocturnal Enuresis. Sensors 2020, 20, 3546. https://doi.org/10.3390/s20123546
Gaubert V, Gidik H, Koncar V. Boxer Underwear Incorporating Textile Moisture Sensor to Prevent Nocturnal Enuresis. Sensors. 2020; 20(12):3546. https://doi.org/10.3390/s20123546
Chicago/Turabian StyleGaubert, Valentin, Hayriye Gidik, and Vladan Koncar. 2020. "Boxer Underwear Incorporating Textile Moisture Sensor to Prevent Nocturnal Enuresis" Sensors 20, no. 12: 3546. https://doi.org/10.3390/s20123546
APA StyleGaubert, V., Gidik, H., & Koncar, V. (2020). Boxer Underwear Incorporating Textile Moisture Sensor to Prevent Nocturnal Enuresis. Sensors, 20(12), 3546. https://doi.org/10.3390/s20123546