Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Treatments
2.2. Treatment for Conferring Electrical Conductivity and Encapsulation
2.3. Fabric Structural Properties
2.4. Moisture Related Properties
2.4.1. Water Absorption
2.4.2. Contact Angle
2.4.3. Moisture Regain
2.4.4. Permeability to Water Vapor
2.4.5. Permeability to Air
2.5. Electrical Conductivity
2.6. Effects of Moisture on Electrical Conductivity
2.6.1. Wetting
2.6.2. Ambient Temperature and Humidity
2.7. Durability in Use
2.7.1. Effects of Wash
2.7.2. Resistance to Abrasion
2.7.3. Performance with Storage
2.8. Statistical Analysis
3. Results
3.1. Fabric Structural Properties
3.2. Moisture Related Properties
3.3. Electrical Conductivity
3.4. Performance with Mositure
3.4.1. Effects of Water
3.4.2. Effects of Environmental Temperature and Humidity
3.5. Durability in Use
3.5.1. Wash
3.5.2. Abrasion
Electrical Conductivity
Pilling
3.5.3. Storage
4. Discussion
4.1. Moisture Transfer
4.2. Electrical Conductivity
4.2.1. Encapsulation
4.2.2. Effects of Wetting and Changes in Environmental Temperature and Humidity
4.2.3. Durability in Use
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, S.; Laing, R.M. Fabrics and garments as sensors: A research update. Sensors 2019, 19, 3570. [Google Scholar] [CrossRef] [Green Version]
- Holcombe, B.V. The thermal insulation performance of textile fabrics. Wool Sci. Rev. 1984, 60, 12–22. [Google Scholar]
- Havenith, G. Interaction of clothing and thermoregulation. Exog. Dermatol. 2002, 1, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.; Zhao, Y. Graphene modified cotton textiles. Adv. Mater. Res. 2011, 331, 93–96. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Navaneetheiyer, U.; Mohan, R.; Lee, J.; Kim, S.J. Graphene oxide nanostructures modified multifunctional cotton fabrics. Appl. Nanosci. 2012, 2, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yan, X.; Lang, J.; Peng, C.; Xue, Q. Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J. Mater. Chem. 2012, 22, 17245–17253. [Google Scholar] [CrossRef]
- Shateri-Khalilabad, M.; Yazdanshenas, M.E. Fabricating electroconductive cotton textiles using graphene. Carbohydr. Polym. 2013, 96, 190–195. [Google Scholar] [CrossRef]
- Shateri-Khalilabad, M.; Yazdanshenas, M.E. Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose 2013, 20, 963–972. [Google Scholar] [CrossRef]
- Javed, K.; Galib, C.M.A.; Yang, F.; Chen, C.M.; Wang, C. A new approach to fabricate graphene electro-conductive networks on natural fibres by ultraviolet curing method. Synth. Met. 2014, 193, 41–47. [Google Scholar] [CrossRef]
- Karimi, L.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A.; Mirjalili, M. Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 2014, 21, 3813–3827. [Google Scholar] [CrossRef]
- Samad, Y.A.; Li, Y.; Alhassan, S.M.; Liao, K. Non-destroyable graphene cladding on a range of textile and other fibres and fibre mats. R. Soc. Chem. Adv. 2014, 4, 16935–16938. [Google Scholar] [CrossRef]
- Karimi, L.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A.; Mirjalili, M. Optimising the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric. Appl. Surf. Sci. 2015, 332, 665–673. [Google Scholar] [CrossRef]
- Sahito, I.A.; Sun, K.C.; Arbab, A.A.; Oadir, M.B.; Jeong, S.H. Graphene coated cotton fabric as textile structured counter electrode for DSSC. Electrochim. Acta 2015, 173, 164–171. [Google Scholar] [CrossRef]
- Karimi, L.; Yazdanshnas, M.E.; Khajavi, R.; Rashidi, A.; Mirjalili, M. Functional finishing of cotton fabrics using graphene oxide nanosheets decorated with titanium dioxide nanoparticles. J. Text. Inst. 2016, 107, 1122–1134. [Google Scholar] [CrossRef]
- Cai, G.; Xu, Z.; Yang, M.; Tang, B.; Wang, X. Functionalisation of cotton fabrics through thermal reduction of graphene oxide. Appl. Surf. Sci. 2017, 593, 441–448. [Google Scholar] [CrossRef]
- Chatterjee, A.; Kumar, M.N.; Maity, S. Influence of graphene oxide concentration and dipping cycles on electrical conductivity of coated cotton textiles. J. Text. Inst. 2017, 108, 1910–1916. [Google Scholar] [CrossRef]
- Karim, N.; Afroj, S.; Tan, S.; He, P.; Fernado, A.; Carr, C.; Novoselov, K.S. Scalable production of graphene-based wearable e-textiles. Am. Chem. Soc. Nano 2017, 11, 12266–12275. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Fortuniak, W.; Mizerska, U.; Kaminska, I.; Makowski, T.; Brzezinkski, S.; Piorkowska, E. Modification of cotton fabric with graphene and reduced graphene oxide using sol-gel method. Cellulose 2017, 24, 4057–4068. [Google Scholar] [CrossRef]
- Ren, J.; Wang, C.; Zhang, X.; Carey, T.; Chen, K.; Yin, Y.; Torrisi, F. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017, 111, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Fairbanks, M.; Andrew, T.L. Rugged textile electrodes for wearable devices obtained by vapor coating off-the-shelf, plain-woven fabrics. Adv. Funct. Mater. 2017, 27, 1700415. [Google Scholar] [CrossRef]
- Stan, M.S.; Nica, I.C.; Popa, M.; Chifiriuc, M.C.; Iordache, O.; Dumitrescu, I.; Diamandescu, L.; Dinischiotu, A. Reduced graphene oxide/TiO2 nanocomposite coating of cotton fabrics with antibacterial and self-cleaning properties. J. Indust. Text. 2018, 49, 277–293. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, L.; Zhang, Q.; Guo, H.; Wang, A.; Xu, W.; Wang, Y. Structure and properties of carboxymethyl cotton fabric loaded by reduced graphene oxide. Carbohydrate Polym. 2019, 214, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Tian, M.; Hu, X.; Wang, Y.; Zhu, S.; Guo, X.; Han, G.; Zhang, X.; Sun, K.; Tang, X. Functionalisation of cotton fabric at low graphene nanoplate content for ultrastrong ultraviolet blocking. Carbon 2014, 80, 565–574. [Google Scholar] [CrossRef]
- Hu, X.; Tian, M.; Qu, L.; Zhu, S.; Han, G. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 2015, 95, 625–633. [Google Scholar] [CrossRef]
- Souri, H.; Bhattacharya, D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. Appl. Mater. Interfaces 2018, 10, 20845–20853. [Google Scholar] [CrossRef] [PubMed]
- Souri, H.; Bhattacharya, D. Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. J. Mater. Chem. C 2018, 6, 10524–10531. [Google Scholar] [CrossRef]
- Xu, X.; Luo, M.; He, P.; Guo, X.; Yang, J. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Appl. Phys. A 2019, 125, 714. [Google Scholar] [CrossRef]
- Xu, X.; Luo, M.; He, P.; Yang, J. Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring. J. Phys. D Appl. Phys. 2020, 53, 125402. [Google Scholar] [CrossRef]
- Gan, L.; Shang, S.; Yuen, C.W.M.; Jiang, S.X. Graphene nanoribbon coated flexible and conductive cotton fabric. Compos. Sci. Technol. 2015, 117, 208–214. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Zhou, Y.; Dai, K.; Zhang, G.; Zhang, B.; Liu, C.; Shen, C. High-performance wearable strain sensor based on graphene/cotton fabric with high durability and low detection limit. ACS Appl. Mater. Interfaces 2020, 12, 1474–1485. [Google Scholar] [CrossRef]
- Abbas, A.; Zhao, Y.; Zhou, J.; Wang, X.; Lin, T. Improving thermal conductivity of cotton fabrics using composite coatings containing graphene, multiwall carbon nanotube or boron nitride fine particles. Fibres Polym. 2013, 14, 1641–1649. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Brzezinkski, S.; Kaminska, I.; Wrobel, S.; Urszula, M.; Fortuniak, W.; Piorkowska, E.; Svyntkivska, M.; Makowski, T. Electrically conductive composite textiles modified with graphene using sol-gel method. J. Alloys Compd. 2019, 784, 22–28. [Google Scholar] [CrossRef]
- Nooralian, Z.; Gashti, M.P.; Ebrahimi, I. Fabrication of a multifunctional graphene/polyvinylphosphonic acid/cotton nanocomposite via facile spray layer-by-layer assembly. R. Soc. Chem. Adv. 2016, 6, 23288–23299. [Google Scholar] [CrossRef] [Green Version]
- Varesano, A.; Dall’Acqua, L.; Tonin, C. A study on the electrical conductivity decay of polypyrrole coated wool textiles. Polym. Degrad. Stab. 2005, 89, 125–132. [Google Scholar] [CrossRef]
- Varesano, A.; Tonin, C. Improving electrical performances of wool textiles: Synthesis of conducting polypyrrole on the fiber surface. Text. Res. J. 2008, 78, 1110–1115. [Google Scholar] [CrossRef]
- Onar, N.; Aksit, A.C.; Ebeoglugil, M.F.; Birlik, I.; Celik, E.; Ozdemir, I. Structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline and polypyrrole. J. Appl. Polym. Sci. 2009, 114, 2003–2010. [Google Scholar] [CrossRef]
- Song, L.; Ci, L.; Gao, W.; Ajayan, P.M. Transfer printing of graphene using gold film. ACS Nano 2009, 3, 1353–1356. [Google Scholar] [CrossRef]
- Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Pasta, M.; Mantia, F.L.; Hu, L.; Deshazer, H.D.; Cui, Y. Aqueous supercapacitors on conductive cotton. Nano Res. 2010, 3, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Montazer, M.; Ghayem Asghari, M.S.; Pakdel, E. Electrical conductivity of single walled and multiwalled carbon nanotube containing wool fibres. J. Appl. Polym. Sci. 2011, 121, 3353–3358. [Google Scholar] [CrossRef]
- Tang, X.; Tian, M.; Qu, L.; Zhu, S.; Guo, X.; Han, G.; Sun, K.; Hu, X.; Wang, Y.; Xu, X. Functionalisation of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties. Synth. Met. 2015, 202, 82–88. [Google Scholar] [CrossRef]
- Shirgholami, M.A.; Loghman, K.; Mirjalili, M. Multifunctional modification of wool fabric using graphene/TiO2 nanocomposite. Fibers Polym. 2016, 17, 220–228. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, G.; Rao, W.; Fan, L.; Xu, W.; Xu, J. A simple method for fabricating nickel-coated cotton fabrics for wearable strain sensor. Cellulose 2018, 25, 4859–4870. [Google Scholar] [CrossRef]
- Kaynak, A.; Foitzik, R.C. Methods of coating textiles with soluble conducting polymers. Res. J. Text. Appar. 2011, 15, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Hu, X.; Qu, L.; Zhu, S.; Sun, Y.; Han, G. Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT:PSS and chitosan. Carbon 2016, 96, 116–117. [Google Scholar] [CrossRef]
- Varnaite-Zuravliova, S.; Sankauskaite, A.; Stygiene, L.; Krauledas, S.; Bekampiene, P.; Milciene, I. The investigation of barrier and comfort properties of multifunctional coated conductive knitted fabrics. J. Ind. Text. 2016, 45, 585–610. [Google Scholar] [CrossRef]
- Ali, A.; Nguen, N.H.A.; Baheti, V.; Ashraf, M.; Militky, J.; Mansoor, T.; Noman, M.T.; Ahmad, S. Electrical conductivity and physiological comfort of silver coated cotton fabrics. J. Text. Inst. 2017, 109, 620–628. [Google Scholar] [CrossRef]
- Varesano, A.; Aluigi, A.; Florio, L.; Fabris, R. Multifunctional cotton fabrics. Synth. Met. 2009, 159, 1082–1089. [Google Scholar] [CrossRef]
- Wang, J.; Kaynak, A.; Wang, L.; Liu, X. Thermal conductivity studies on wool fabrics with conductive coatings. J. Text. Inst. 2006, 97, 265–270. [Google Scholar] [CrossRef]
- Garg, S.; Hurren, C.; Kaynak, A. Improvement of adhesion of conductive polypyrrole coating on wool and polyester fabrics using atmospheric plasma treatment. Synth. Met. 2007, 157, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, X.; Qi, K.; Xin, J.H. Functionalisation of cotton with carbon nanotubes. J. Mater. Chem. 2008, 18, 3454–3460. [Google Scholar] [CrossRef]
- Makowski, T.; Kwowalczyk, D.; Fortuniak, W.; Jeziorska, D.; Brzezinkski, S.; Tracz, A. Superhydrophobic properties of cotton woven fabrics with conducting 3D networks of multiwall carbon nanotubes, MWCNTs. Cellulose 2014, 21, 4659–4670. [Google Scholar] [CrossRef] [Green Version]
- Sahito, I.A.; Sun, K.C.; Arbab, A.A.; Qadir, M.B.; Jeong, H.S. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by catonizing for enriched coating of negatively charged graphene oxide. Carbohydr. Polym. 2015, 130, 299–306. [Google Scholar] [CrossRef]
- Chen, H.; Su, Z.; Song, Y.; Cheng, X.; Chen, X.; Meng, B.; Song, Z.; Chen, D.; Zhang, H. Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv. Funct. Mater. 2017, 27, 1604434. [Google Scholar] [CrossRef]
- Han, M.; Yin, X.; Hou, Z.; Song, C.; Li, X.; Zhang, L.; Cheng, L. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagentic wave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 11803–11810. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, M.G.; Loghin, C.; Chen, Y.; Wang, L.; Catalin, D.; Nierstrasz, V. Effect of liquid immersion of PEDOT:PSS-coated polyester fabric on surface resistance and wettability. Smart Mater. Struct. 2017, 26, 065016. [Google Scholar] [CrossRef]
- Heany, M.B. Electrical conductivity and resistivity. In Electrical Measurement, Signal Processing, and Displays; Webster, J.G., Ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 1–14. [Google Scholar]
- Manasoglu, G.; Celen, R.; Kanik, M.; Ulcay, Y. Electrical resistivity and thermal conductivity properties of graphene-coated woven fabrics. J. Appl. Polym. Sci. 2019, 136, 48024. [Google Scholar] [CrossRef]
- Rosace, G.; Trovato, V.; Colleoni, C.; Caldara, M.; Re, V.; Brucale, M.; Piperopoulos, E.; Mastronardo, E.; Milone, C.; De Luca, G.; et al. Structural and morphological characterizations of MWCNTs hybrid coating onto cotton fabric as potential humidity and temperature wearable sensor. Sens. Actuators B Chem. 2017, 252, 428–439. [Google Scholar] [CrossRef]
- Islam, R.; Khair, N.; Ahmed, D.M.; Shahariar, H. Fabrication of low cost and scalable carbon-based conductive ink for E-textile applications. Mater. Today Commun. 2019, 19, 32–38. [Google Scholar] [CrossRef]
- Afroj, S.; Tan, S.; Abdelkader, A.M.; Novoselov, K.S.; Karim, N. Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 2020, 30, 2000293. [Google Scholar] [CrossRef] [Green Version]
- Afroj, S.; Karim, N.; Wang, Z.; Tan, S.; He, P.; Holwill, M.; Ghazaryan, D.; Fernando, A.; Novoselov, K.S. Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano 2019, 13, 3847–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schal, P.; Junger, I.J.; Grimmelsmann, N.; Ehrmann, A. Development of graphite-based conductive textile coatings. J. Coat. Technol. Res. 2018, 15, 875–883. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Lan, C.; Chen, S.; Wu, D.; Dai, F. Reduced graphene oxide coated silk fabrics with conductive property for wearable electronic textiles application. Adv. Electronic Mater. 2019, 5, 1800648. [Google Scholar] [CrossRef]
- Cao, J.; Wang, C. Highly conductive and flexible silk fabric via electrostatic self assemble between reduced graphene oxide and polyaniline. Organic Electron. 2018, 55, 26–34. [Google Scholar] [CrossRef]
- Barakzehi, M.; Montazer, M.; Sharif, F.; Norby, T.; Chatzitakis, A. A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite. Electrochim. Acta 2019, 305, 187–196. [Google Scholar] [CrossRef]
- Chun, S.; Son, W.; Kim, D.W.; Lee, J.; Min, H.; Jung, H.; Kwon, D.; Kim, A.H.; Kim, Y.J.; Lim, S.K.; et al. Water-resistant and skin-adhesive wearable electronics using graphene fabric sensor with octopus-inspired microsuckers. ACS Appl. Mater. Interfaces 2019, 11, 16951–16957. [Google Scholar] [CrossRef]
- Jia, L.C.; Xu, L.; Ren, F.; Ren, P.G.; Yan, D.X.; Li, Z.M. Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 2019, 144, 101–108. [Google Scholar] [CrossRef]
- Ryan, J.D.; Mengistie, D.A.; Gabrielsson, R.; Lund, A.; Muller, C. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Appl. Mater. Interfaces 2017, 9, 9045–9050. [Google Scholar] [CrossRef]
- Van der Pauw, L.J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 1958, 13, 1–9. [Google Scholar]
- Tokarska, M.; Orpel, M. Study of anisotropic electrical resistance of knitted fabrics. Text. Res. J. 2019, 86, 1073–1083. [Google Scholar] [CrossRef]
- Linz, T.; Vieroth, R.; Dils, C.; Koch, M.; Braun, T.; Becker, K.F.; Kallmayer, C.; Hong, S.M. Embroidered interconnections and encapsulation for electronics in textiles for wearable electronic applications. Adv. Sci. Technol. 2008, 60, 85–94. [Google Scholar] [CrossRef]
- Vervust, T.; Buyle, G.; Bossuyt, F.; Vanfleteren, J. Integration of stretchable and washable electronic modules for smart textile applications. J. Text. Inst. 2012, 103, 1127–1138. [Google Scholar] [CrossRef]
- Seo, H.K.; Park, M.H.; Kim, Y.H.; Kwon, S.J.; Jeong, S.H.; Lee, T.W. Laminated graphene films for flexible transparent thin film encapsulation. ACS Appl. Mater. Interfaces 2016, 8, 14725–14731. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Li, J.; Zhao, S.; Zhang, Y.; Huang, W.; Zhang, G.; Sun, R.; Wong, C.P. A crack-based nickel@graphene-wrapped polyurthane sponge ternary hybrid obtained by electrodeposition for highly sensitive wearable strain sensors. J. Mater. Chem. C 2017, 5, 10167–10175. [Google Scholar] [CrossRef]
- Cherenack, K.; Zysset, C.; Kinkeldei, T.; Munzenrieder, N.; Troster, G. Woven electronic fibres with sensing and display functions for smart textiles. Adv. Mater. 2010, 22, 5178–5182. [Google Scholar] [CrossRef]
- Buechley, L.; Eisenberg, M. Fabric PCBs, electronic sequins, and socket buttons: Techniques for e-textile craft. Pers. Ubiquit. Comput. 2009, 13, 133–150. [Google Scholar] [CrossRef]
- Souri, H.; Bhattacharya, D. Wearable strain sensors based on electrically conductive natural fibre yarns. Mater. Des. 2018, 154, 217–227. [Google Scholar] [CrossRef]
- Molla, M.T.I.; Compton, C.; Dunner, L.E. Launderability of surface-insulated cut and sew E-textiles. In Proceedings of the ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018. [Google Scholar]
- Matsouka, D.; Vassiliadis, S.; Tao, X.; Koncar, V.; Bahadir, S.K.; Kalaoglu, F.; Jevsnik, S. Electrical connection issues on wearable electronics. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Levos, Greece, 5–7 September 2018. [Google Scholar]
- De Falco, F.; Gullo, M.G.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnesa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; International Union for Conservation of Nature: Gland, Switzerland, 2017; p. 43. [Google Scholar]
- Scilingo, E.P.; Lorussi, F.; Mazzoldi, A.; De Rossi, D. Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sens. J. 2003, 3, 460–467. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, X.Y.; Leung, M.Y.; Tsang, J.; Tao, X.M.; Yuen, M.C.W. A flexible strain sensor from polypyrrole-coated fabrics. Synth. Met. 2005, 155, 89–94. [Google Scholar] [CrossRef]
- Lorussi, F.; Scilingo, E.P.; Tesconi, M.; Tognetti, A.; De Rossi, D. Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tao, X.; Yu, T.; Wang, S. Conductive knitted fabric as large-strain gauge under high temperature. Sens. Actuators A Phys. 2006, 126, 129–140. [Google Scholar] [CrossRef]
- Metcalf, C.D.; Collie, S.; Cranny, A.W.; Hallett, G.; James, C.; Adams, J.; Chappell, P.H.; White, N.M.; Burridge, J.H. Fabric-based strain sensors for measuring movement in wearable telemonitoring applications. Synth. Met. 2009, 158, 13. [Google Scholar] [CrossRef] [Green Version]
- Atalay, O.; Kennon, W.R. Knitted strain sensors: Impact of design parameters on sensing properties. Sensors 2014, 14, 4712–4730. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L.; Yang, T.; Li, X.; Zhang, X.; Zhu, M.; Wang, K.; Wu, D.; Zhu, H. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 2014, 24, 4666–4670. [Google Scholar] [CrossRef]
- Park, J.J.; Hyun, W.J.; Mun, S.C.; Park, Y.T.; Park, O.O. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. Appl. Mater. Interfaces 2015, 7, 6317–6324. [Google Scholar] [CrossRef]
- Seyedin, S.; Razal, J.M.; Innis, P.C.; Jeiranikhameneh, A.; Beirne, S.; Wallace, G.G. Knitted strain sensor textiles of highly conductive all-polymeric fibres. Appl. Mater. Interfaces 2015, 7, 21150–21158. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Sun, J.; Huang, Y.; Hu, H.; Jiang, C.; Gai, W.; Li, G.; Zhi, C. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces 2016, 8, 24837–24843. [Google Scholar] [CrossRef]
- Liu, X.; Tang, C.; Du, X.; Xiong, S.; Xi, S.; Liu, Y.; Shen, X.; Zheng, Q.; Wang, Z.; Wu, Y.; et al. A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Mater. Horiz. 2017, 4, 477–486. [Google Scholar] [CrossRef]
- Nejad, H.R.; Punjiya, M.P.; Sonkusale, S. Washable thread based strain sensor for smart textile. In Proceedings of the Transducers, Kaohsiung, Taiwan, 18–22 June 2017; pp. 1183–1186. [Google Scholar]
- Atalay, O. Textile-based, interdigital, capacitive, soft-strain sensor for wearable applications. Materials 2018, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Glasper, M.J.; Li, X.; Nychka, J.A.; Batcheller, J.; Chung, H.J.; Chen, Y. Preparation of fabric strain sensor based on graphene for human motion monitoring. J. Mater. Sci. 2018, 53, 9026–9033. [Google Scholar] [CrossRef]
- Seyedin, S.; Moradi, S.; Singh, C.; Razal, J.M. Continuous production of stretchable conductive multifilaments in kilometer scale enables facile knitting of wearable strain sensing textiles. Appl. Mater. Today 2018, 11, 255–263. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Mengistie, D.A.; Chen, Y.; Wang, L.; Loghin, C.; Nierstrasz, V. Electrically conductive highly elastic polyamide/lycra fabric treated with PEDOT:PSS and polyurethane. J. Mater. Sci. 2019, 54, 9591–9602. [Google Scholar] [CrossRef] [Green Version]
- Gore, S.E.; Laing, R.M.; Wilson, C.A.; Carr, D.J. Standardizing a pre-treatment cleaning procedure and effects of application of apparel fabrics. Text. Res. J. 2006, 76, 455–464. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 6330:2012 Textiles—Domestic Washing and Drying Procedures for Textile Testing; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- International Organization for Standardization. ISO 139:2005 Textiles—Standard Atmospheres for Conditioning and Testing; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- British Standards Institution. BS EN 12127:1998 Textiles—Fabrics—Determination of Mass Per Unit Area Using Small Samples; British Standards Institution: London, UK, 1998. [Google Scholar]
- International Organization for Standardization. ISO 5084:1996 Textiles—Determination of Thickness of Textiles and Textile Products; International Organization for Standardization: Geneva, Switzerland, 1996. [Google Scholar]
- International Organization for Standardization. ISO 17617:2014 Textiles—Determination of Moisture Drying Rate; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Negri, A.P.; Cornell, H.J.; Rivett, D.E. The modification of the surface diffusion barrier of wool. J. Soc. Dyers Colorists 1993, 109, 296–301. [Google Scholar] [CrossRef]
- Meade, S.J.; Dyer, J.M.; Caldwell, J.P.; Bryson, W.G. Covalent modification of the wool fibre surface: Removal of the outer lipid layer. Text. Res. J. 2008, 78, 943–957. [Google Scholar] [CrossRef]
- British Standards Institution. BS 7209:1990 Specification for Water Vapour Permeable Apparel Fabrics; British Standards Institution: London, UK, 1990. [Google Scholar]
- International Organization for Standardization. ISO BS EN 9237:1995 Textiles—Determination of the Permeability of Fabrics to Air; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- Qi, J.; Xu, X.; Liu, X.; Lau, K.T. Fabrication of textile based conductometric polyaniline gas sensor. Sens. Actuators B Chem. 2014, 202, 732–740. [Google Scholar] [CrossRef]
- Chung, M.G.; Kim, D.H.; Lee, H.M.; Kim, T.; Choi, J.H.; Seo, D.; Yoo, J.B.; Hong, S.H.; Kang, T.J.; Kim, Y.H. Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B Chem. 2012, 166–167, 172–176. [Google Scholar] [CrossRef]
- Denawaka, C.J.; Fowlis, I.A.; Dean, J.R. Source, impact and removal of malodour from soiled clothing. J. Chromatogr. A 2016, 1438, 216–225. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. ISO 12947-2:2016 Textiles—Determination of the Abrasion Resistance of Fabrics by the Martindale Method—Part 2: Determination of Specimen Breakdown; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- International Organization for Standardization. Iso 12945-2:2000 Textiles—Determination of Fabric Propensity to Surface Fuzzing and to Pilling—Part 2: Modified Martindale Method; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- Fiji Contributors. Fiji. Available online: https://fiji.sc/ (accessed on 13 May 2020).
- SPSS Inc. SPSS Version 22.0.0.0 for Windows; SPSS Inc.: Chicago, IL, USA, 2012. [Google Scholar]
- Oglakcioglu, N.; Marmarali, A. Thermal comfort properties of some knitted structures. Fibres Text. East. Europe 2007, 156, 94–96. [Google Scholar]
- Mura, S.; Greppi, G.; Malfatti, L.; Lasio, B.; Sanna, V.; Mura, M.E.; Marceddu, S.; Luglie, A. Multifunctionalisation of wool fabrics through nanoparticles: A chemical route towards smart textiles. J. Colloid Interface Sci. 2015, 456, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Cao, G.; Chen, F.; Tang, Y.; Liu, X.; Xu, W. Durable superhydrophobic wool fabrics coating with nanoscale AL2O3 layer by atomic layer deposition. Appl. Surf. Sci. 2015, 349, 876–879. [Google Scholar] [CrossRef]
- Sun, D.; Stylios, G.K. Fabric surface properties affected by low temperature plasma treatment. J. Mater. Process. Technol. 2006, 173, 172–177. [Google Scholar] [CrossRef]
- Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A.V.; Yavari, F.; Shi, Y.; Ajayan, P.M.; Koratkar, N.A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217–222. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Abidi, N.; Cabrales, L. Wettability and surface freee energy of graphene films. Langmuir 2009, 25, 11078–11081. [Google Scholar] [CrossRef] [PubMed]
- Tissera, N.D.; Wijesena, R.N.; Perera, J.R.; de Silva, K.N.; Amaratunge, G.A. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating. Appl. Surf. Sci. 2015, 324, 455–463. [Google Scholar] [CrossRef]
- Smith, A.D.; Elgammal, K.; Niklaus, F.; Delin, A.; Fischer, A.C.; Vaziri, S.; Forsberg, F.; Rasander, M.; Hugosson, H.; Bergqvist, L.; et al. Resistvie graphene humidity sensors with rapid and direct electrical readout. Nanoscale 2015, 7, 19099–19109. [Google Scholar] [CrossRef] [Green Version]
- Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhanen, T. Ultrafast graphene oxide humidity sensor. ACS Nano 2013, 7, 11166–11173. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xia, B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B Chem. 2014, 197, 66–72. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xia, B.; Xue, Q. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B Chem. 2014, 203, 263–270. [Google Scholar] [CrossRef]
- Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterisation of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B Chem. 2016, 225. [Google Scholar] [CrossRef]
- Lin, W.D.; Chang, H.M.; Wu, R.J. Applied novel sensing material graphene/polypyrrole for humidity sensor. Sens. Actuators B Chem. 2013, 181, 326–331. [Google Scholar] [CrossRef]
- Hearle, J.W.S.; Lomas, B.; Cooke, W.D. Atlas Fibre Fracture Damage Textiles, 2nd ed.; Woodhead Publishing Ltd.: Cambridge, UK, 1998. [Google Scholar]
Functionalization | Graphene Ink Only | SYLGARD™ 184 | Poly(dimethylsiloxane) | Granger’s® Clothing Repel |
---|---|---|---|---|
code | encap 0 | encap 1S | encap 2P | encap 3G |
(a) Wool | ||||||
Not Treated | Pre-Treated | Encap 0 | Encap 1S | Encap 2P | Encap 3G | |
water absorbency time (s) n = 5 | ||||||
mean | 94.80 | 11.40 | 2.80 | 300.00 | 3.00 | 160.60 |
(s.d., CV%) | (32.52, 34.31) | (1.82, 15.94) | (0.45, 15.97) | (0.00, 0.00) | (0.00, 0.00) | (117.14, 72.94) |
contact angle (°) n = 10 | ||||||
mean | 11.58 | 79.20 | 0.00 | 96.63 | 0.00 | 58.50 |
(s.d., CV%) | (17.24, 148.86) | (14.37, 18.14) | (0.00, 0.00) | (17.99, 18.61) | (0.00, 0.00) | (38.78, 66.29) |
image | ||||||
regain (%) n = 5 | ||||||
mean | 13.52 | 13.80 | 10.22 | 5.43 | 11.71 | 12.40 |
(s.d., CV%) | (1.04, 7.73) | (1.06, 7.65) | (5.18, 50.69) | (2.59, 47.77) | (1.08, 9.18) | (0.58, 4.68) |
water vapor permeability index n = 3 | ||||||
mean | 104.56 | 92.31 | 96.06 | 78.24 | 101.84 | 102.50 |
(s.d., CV%) | (95.09, 91.74) | (7.58, 8.21) | (0.71, 0.74) | (12.21, 15.61) | (6.21, 6.10) | (5.08, 4.96) |
air permeability (mm/s) n = 10 | ||||||
mean | 811.62 | 948.56 | 1028.72 | 304.60 | 1275.88 | 928.52 |
(s.d., CV%) | (47.37, 5.84) | (82.12, 8.66) | (84.50, 8.21) | (48.45, 15.90) | (71.81, 5.63) | (85.95, 9.26) |
(b) Cotton | ||||||
Not Treated | Pre-Treated | Encap 0 | Encap 1S | Encap 2P | Encap 3G | |
water absorbency time (s) n = 5 | ||||||
mean | 300.00 | 300.00 | 2.60 | 300.00 | 2.40 | 205.80 |
(s.d., CV%) | (0.00, 0.00) | (0.00, 0.00) | (0.55, 21.07) | (0.00, 0.00) | (0.55, 22.82) | (62.24, 30.24) |
contact angle (°) n = 10 | ||||||
mean | 67.93 | 90.55 | 0.00 | 75.24 | 0.00 | 43.92 |
(s.d., CV%) | (6.64, 9.78) | (6.11, 6.75) | (0.00, 0.00) | (11.74, 14.84) | (0.00, 0.00) | (47.38, 107.88) |
image | ||||||
regain (%) n = 5 | ||||||
mean | 7.94 | 9.08 | 8.62 | 4.53 | 7.27 | 8.48 |
(s.d., CV%) | (2.78, 35.08) | (0.50, 5.54) | (0.76, 8.80) | (0.60, 13.15) | (0.67, 9.20) | (0.56, 6.66) |
water vapor permeability index n = 3 | ||||||
mean | 106.53 | 231.66 | 219.82 | 202.47 | 209.99 | 258.74 |
(s.d., CV%) | (2.68, 2.52) | (22.21, 9.59) | (14.14, 6.43) | (26.68, 13.18) | (15.89, 7.57) | (46.35, 17.91) |
air permeability (mm/s) n = 10 | ||||||
mean | 377.75 | 363.72 | 285.56 | 444.88 | 404.80 | 305.60 |
(s.d., CV%) | (20.07, 5.31) | (10.61, 2.92) | (26.40, 9.25) | (58.08, 13.06) | (36.34, 8.98) | (32.81, 10.74) |
Wales | Courses | |||||||
Encap 0 | Encap 1S | Encap 2P | Encap 3G | Encap 0 | Encap 1S | Encap 2P | Encap 3G | |
(a) Wool | ||||||||
“full” encapsulation | ||||||||
mean | 3.18 | 0.28 | 0.53 | 0.23 | 2.88 | 0.34 | 0.69 | 0.30 |
(s.d., CV%) | (1.17, 36.81) | (0.13, 44.57) | (0.18, 34.05) | (0.17, 73.90) | (1.06, 36.69) | (0.14, 41.32) | (0.64, 93.08) | (0.22, 64.18) |
center strip of encapsulation | ||||||||
mean | 2.62 | 1.06 | 1.16 | 1.18 | 2.01 | 0.92 | 1.18 | 1.31 |
(s.d., CV%) | (1.16, 44.24) | (0.52, 49.19) | (0.40, 34.04) | (0.67, 56.83) | (0.39, 19.28) | (0.56, 60.68) | (0.74, 62.73) | (0.61, 46.88) |
(b) Cotton | ||||||||
“full” encapsulation | ||||||||
mean | 7.65 | 0.92 | 1.63 | 2.38 | 6.58 | 1.12 | 1.52 | 2.37 |
(s.d., CV%) | (2.14, 28.00) | (0.34, 36.54) | (0.32, 19.97) | (0.15, 6.16) | (1.33, 20.17) | (0.37, 32.62) | (0.24, 16.06) | (0.41, 17.27) |
center strip of encapsulation | ||||||||
mean | 19.02 | 3.40 | 6.69 | 7.69 | 19.03 | 3.31 | 7.17 | 6.36 |
(s.d., CV%) | (4.32, 22.73) | (1.73, 50.71) | (0.49, 7.29) | (2.26, 29.41) | (2.71, 14.22) | (1.47, 44.25) | (0.76, 10.57) | (1.05, 16.52) |
Encap 0 | Encap 1S | Encap 2P | Encap 3G | |
---|---|---|---|---|
(a) Wool | ||||
electrical conductivity | 1 | 4 | 2 | 3 |
change with wetting * | 2 | 1 | 3 | 4 |
change with temperature/humidity * | 2 | 1 | 3 | 4 |
wash | 4 | 1 | 2 | 3 |
abrasion | 4 | 1 | 2 | 3 |
storage | 4 | 1 | 2 | 3 |
(b) Cotton | ||||
electrical conductivity | 1 | 4 | 3 | 2 |
change with wetting * | 2 | 1 | 3 | 4 |
change with temperature/humidity * | 2 | 1 | 3 | 4 |
wash | 4 | 1 | 3 | 2 |
abrasion | 4 | 1 | 2 | 3 |
storage | 4 | 1 | 2 | 3 |
Fabric, Reference | Functionalization | Encapsulation | Electrical Conductivity/Resistance |
---|---|---|---|
100% wool and 100% cotton single jersey the present study | graphene ink | SYLGARD™ 184, poly(dimethylsiloxane), Granger’s® Clothing Repel | wool: 5.02 S/m (327.66 Ω) cotton: 10 S/m (138.64 Ω); decrease to 0.28 S/m (5.54 Ω), 0.92 S/m (1.60 Ω) (SYLGARD™ 184); 0.53 S/m (2.53 Ω), 1.63 S/m (0.86 Ω) (poly(dimethylsiloxane)); 0.23/S/m (13.38 Ω), 2.38 S/m (0.58 Ω) (Granger’s®) |
100% cotton weave 90° or 45° angle between vertical and horizontal yarns; yarn count, Ne 40 s; density 60 × 60 two samples – 60 × 60 mm × 0.2 mm3; 30 × 10 mm × 0.46 mm3 [30] | dipped in multilayer graphene nanosheets 4 mg/mL dispersion, three cycles | SYLGARD™ 184, immersion, cured 100 °C 30 min | 0.21 Ω, 0.49 Ω to 0.26 Ω, 0.68 Ω for 90° and 45° fabrics, respectively fabrics due to encapsulation |
100% cotton and 100% wool weft knit, 0.55, 0.7 mm thickness, 223.9, 509.7 µm fiber diameter, 0.22, 0.38 kg/m2 area density, respectively, “dog bone” shape 100 × 6 mm [25] | graphene nanoparticles and carbon black dispersed in deionized water and sodium dodecylbenzene-sulfonate | Ecoflex® (0030), liquid elastic elastomer, cured 90 °C 45 min, fabric placed in this layer and non-cured Ecoflex® on top, cured; yield 4 mm thickness | surface resistance ~286.54 Ω and 232.15 Ω for cotton and wool; increased to 1.95 KΩ and 1.22 KΩ with the Ecoflex® layer, respectively |
polyurethane sponge [54] | immersion in carbon nanotubes | half cured (70 °C, 20 min) poly(dimethylsiloxane) | electrical resistance after first dip 450 KΩ and five treatments 2.3 KΩ |
polyurethane sponge [55] | nickel nanoparticles and graphene | poly(dimethylsiloxane) upper and lower layer, half cured | electrical resistance 2.5 MΩ with one cycle, 29.72 KΩ after five cycles |
Fabric, Reference | Functionalization | Encapsulation | Performance with Wash |
---|---|---|---|
100% wool and cotton single jersey the present study | graphene ink | SYLGARD™ 184, poly(dimethylsiloxane), Granger’s® Clothing Repel | graphene ink, encap 1S, encap 2P, encap 3G following 100 washes show decline: Wool 98, 93, 89, 98% (wales); 95, 77, 69, 94% (courses); cotton 99, 78, 92, 95% (wales); 99, 72, 90, 94% (courses), respectively |
100% cotton fabric [79] | surface mount LEDs soldered to stitch traces, silver conductive yarn | Gear Aid Sil-Net™ silicon seam sealer | 0.38 Ω/m following 16.67 h washing and drying (Whirlpool® Ultimate Care II washing and tumble-drying machines) |
woven fabric [72] | miniaturized embroidery circuits with silver coated yarn (500 Ω/m) | hot melt and transfer molding of epoxy resin and hardener | no reduction in performance following 20 washes (ISO 6330:2000-6A: 40 °C, dripped dried); 19% failure outside encapsulated area |
100% Nomex single jersey [80] | digital printed circuit board (10 Ω) soldered on electrodes of Kapton with Shieldtex (234/34-2 ply) silver coated polyamide (linear resistance < 100 Ωm) | silicon and thermoplastic polyurethane film | electrical conductivity decreased approximately four times following 50 wash cycles (ISO 6330—40 °C, 30 min) |
99% polyester/1% carbon woven and polyamide/elastane knit [73] | standard packaged components and meander-shaped copper tracks covered with polyimide | four types of poly(dimethylsiloxane) (Dow Corning 9601, 9600, 184, 186 with different viscosities) applied by screen printing, cured 100 °C 10 min | washes as per ISO 6330:2000: Stable after 50 washes in protective bag, 60 °C water, 3 h (procedure 5A), water and soap (2.5 g/L standard detergent), gyro washing; functionality retained after five washes procedure 5A with protective bag, air dried; lost functionality after six washes (no protective bag, air dry); and two washes in protective bag with tumble drying; functional after five industrial washes at 40 °C with tumble drying 80 °C; functionality lost with 65 °C wash |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, S.; Laing, R.; Tan, E.W.; Wilson, C. Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance. Sensors 2020, 20, 4243. https://doi.org/10.3390/s20154243
Wilson S, Laing R, Tan EW, Wilson C. Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance. Sensors. 2020; 20(15):4243. https://doi.org/10.3390/s20154243
Chicago/Turabian StyleWilson, Sophie, Raechel Laing, Eng Wui Tan, and Cheryl Wilson. 2020. "Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance" Sensors 20, no. 15: 4243. https://doi.org/10.3390/s20154243
APA StyleWilson, S., Laing, R., Tan, E. W., & Wilson, C. (2020). Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance. Sensors, 20(15), 4243. https://doi.org/10.3390/s20154243