Fuzzy-Based Approach Using IoT Devices for Smart Home to Assist Blind People for Navigation
Abstract
:1. Introduction
2. Description of System for Navigation to Assist Blind People
3. Simulation and Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Velázquez, R. Wearable and Autonomous Biomedical Devices and Systems for Smart Environment; Wearable Assistive Devices for the Blind; Springer: Berlin/Heidelberg, Germany, 2010; pp. 331–349. [Google Scholar]
- Baldwin, D. Wayfinding technology: A road map to the future. J. Vis. Impair. Blind. 2003, 97, 612–620. [Google Scholar] [CrossRef]
- Shah, C.; Bouzit, M.; Youssef, M.; Vasquez, L. Evaluation of RUNetra tactile feedback navigation system for the visually-impaired. In Proceedings of the International Workshop on Virtual Rehabilitation, New York, NY, USA, 29–30 August 2006; pp. 72–77. [Google Scholar]
- Elmannai, W.; Elleithy, K. Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions. Sensors 2017, 17, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelkader, T.; Mokhtar, K.; Abdelaziz, O. New space time coding for joint blind Channel Estimation and Data Detection through time varying MIMO channels. Int. J. Comput. Sci. Issues 2014, 11, 33–38. [Google Scholar]
- Abuthinien, M.; Chen, S.; Wolfgang, A.; Hanzo, L. Joint maximum likelihood channel estimation and data detection for MIMO systems. In Proceedings of the IEEE International Conference on Communications, 2007. ICC’07, Glasgow, UK, 24–28 June 2007; pp. 5354–5358. [Google Scholar]
- Mezghani, A.; SwindleHurst, A.L. Blind estimation of sparse multi-user massive MIMO channels. In Proceedings of the 21th International ITG Workshop on Smart Antennas, Berlin, Germany, 15–17 March 2017; pp. 2–6. [Google Scholar]
- Seyman, M.N.; Taspinar, N. Symbol detection using the differential evolution algorithm in MIMO-OFDM systems. Turk. J. Electr. Eng. Comput. Sci. 2013, 21, 373–380. [Google Scholar]
- Mahdi Safaa, A.; Muhsin Asaad, H.; Al-Mosawi Ali, I. Using Ultrasonic Sensor for Blind and Deaf persons Combines Voice Alert and Vibration Properties. Res. J. Recent Sci. 2012, 1, 50–52. [Google Scholar]
- Li, S.; Tryfonas, T.; Li, H. The Internet of Things: A security point of view. Internet Res. 2016, 26, 337–359. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xu, D.; Zhao, S. The Internet of Things: A Survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Hong, T.S.; Nakhaeinia, D.; Karasafi, B. Application of Fuzzy Logic in Mobile Robot Navigation. In Book Fuzzy Logic- Controls, Theories and Applications; Dadios, E., Ed.; InTech: Shanghai, China, 2012; ISBN 978-953-51-0396-7. [Google Scholar]
- Erman, M.; Mohammad, A.; Rakus-Edndersson, E. Fuzzy Logic Applications in Wireless Communications. In Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, 20–24 July 2009. [Google Scholar]
- Xiong, B.; Shiru, Q.U. Intelligent Vehicle’s Path Tracking Based on Fuzzy Control. J. Transp. Syst. Eng. Inf. 2010, 10, 70–75. [Google Scholar] [CrossRef]
- Ali, B.; Ashraf, M.W.; Tayyaba, S. Simulation, Fuzzy Analysis and Development of ZnO Nanostructure-based Piezoelectric MEMS Energy Harvester. Energies 2019, 12, 807. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Huang, J.; Zeng, Q. Preview fuzzy control method for intelligent vehicle path tracking. In Proceedings of the IEEE International Conference on Informatics and Computing (PIC), Shanghai, China, 10–12 December 2010; pp. 1211–1214. [Google Scholar]
- Omrane, H.; Masmoudi, M.S.; Masmoudi, M. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation. Comput. Intell. Neurosci. 2016, 2016, 9548482. [Google Scholar] [CrossRef] [Green Version]
- Ghaffari, S.; Homaeinezhad, M.R. Autonomous path following by fuzzy adaptive curvature-based point selection algorithm for four-wheel-steering car-like mobile robot. Res. Artic. Artic. Inf. 2018, 232, 2655–2665. [Google Scholar] [CrossRef]
- Tayyaba, S.; Afzal, M.J.; Sarwar, G.; Ashraf, M.W.; Afzulpurkar, N. Simulation of flow control in straight microchannels using fuzzy logic. In Proceedings of the 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta, Pakistan, 11–12 April 2016; pp. 213–216. [Google Scholar] [CrossRef]
- Ali, B.; Tayyaba, S.; Ashraf, M.W.; Nawaz, M.W.; Mushtaq, M.T.; Akhlaq, M.; Wasim, M.F. Fuzzy Simulation, Synthesis, Characterization and Voltage Measurements of Zinc Oxide Nano-Rods Based Nanogenerators. Dig. J. Nanomater. Biostructures 2020, 15, 289–297. [Google Scholar]
- Karakaya, S.; Ocak, H. Fuzzy logic-based moving obstacle avoidance method. Glob. J. Comput. Sci. Theory Res. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ilyana, N.; Apandi, A.; Martin, A. The Integration of Fuzzy Logic System for Obstacle Avoidance Behavior of Mobile Robot. Int. J. Electr. Eng. Appl. Sci. 2019, 2, 31–38. [Google Scholar]
- Yamamoto, B.; Wong, A.; Agcanas, P.J.; Jones, K.; Gaspar, D.; Andrade, R.; Trimble, A.Z. Received Signal Strength Indication (RSSI) of 2.4 GHz and 5 GHz Wireless Local Area Network Systems Projected over Land and Sea for Near-Shore Maritime Robot Operations. J. Mar. Sci. Eng. 2019, 7, 290. [Google Scholar] [CrossRef] [Green Version]
- AsadUllah, M.; Khan, M.A.; Abbas, S.; Athar, A.; Raza, S.S.; Ahmad, G. Blind channel and data estimation using fuzzy logic-empowered opposite learning-based mutant particle swarm optimization. Computational Intelligence and Neuroscience. Comput. Intell. Neurosci. 2018, 2018, 6759526. [Google Scholar] [CrossRef]
- Lancu, I. A Mamdani Type Fuzzy Logic Controller, Fuzzy Logic: Controls, Concepts, Theories and Applications; Dadios, E., Ed.; InTech: Shanghai, China, 2012. [Google Scholar]
- Afzal, M.J.; Tayyaba, S.; Ashraf, M.W.; Javaid, F.; Balas, V.E. Chapter 3—A case study: Impact of Internet of Things devices and pharma on the improvements of a child in autism. In Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach; Balas, V.E., Solanki, V.K., Kumar, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 49–83. [Google Scholar]
- Tayyaba, S.; Khan, S.; Ashraf, M.W.; Balas, V.E. Home Automation Using IoT. In Recent Trends and Advances in Artificial Intelligence and Internet of Things. Intelligent Systems Reference Library; Balas, V., Kumar, R., Srivastava, R., Eds.; Springer: Cham, Switzerland, 2020; Volume 172. [Google Scholar]
Rule No. | Obstacle Distance | Obstacle Direction | Target Direction | Acceleration (a) | Member Ship Function Values (MFs Values) | Min. Value of MFs (Mi) | Singleton Value for Acceleration (Si1) | Mi × Si1 |
---|---|---|---|---|---|---|---|---|
R1 | Very near | Fwd | Back | Keep moving | y1^y3^y5 | 0.4 | 0.01 | 0.004 |
R2 | Very near | Fwd | Stop | Stop | y1^y3^y6 | 0.52 | 0 | 0 |
R3 | Near | Back | Right | Keep moving | y1^y4^y5 | 0.18 | 0.01 | 0.0018 |
R4 | Near | Back | Fwd | Keep moving | y1^y4^y6 | 0.18 | 0.01 | 0.0018 |
R5 | Middle | Right | Back | Keep moving | y2^y3^y5 | 0.4 | 0.01 | 0.004 |
R6 | Middle | Right | Stop | Stop | y2^y3^y6 | 0.48 | 0 | 0 |
R7 | Far | Back | Left | Keep moving | y2^y4^y5 | 0.18 | 0.01 | 0.0018 |
R8 | Far | Left | Back | Keep moving | y2^y4^y6 | 0.18 | 0.01 | 0.0018 |
Rule No. | Obstacle Distance | Obstacle Direction | Target Direction | Acceleration Direction | Member Ship Function Values (MFs Values) | Min. Value Of MFs (Mi) | Singleton Value for Acceleration Direction (Si2) | Mi × Si2 |
---|---|---|---|---|---|---|---|---|
R1 | Very near | Fwd | Back | Move Back | y1^y3^y5 | 0.4 | 0.025 | 0.01 |
R2 | Very near | Fwd | Stop | Stop | y1^y3^y6 | 0.52 | 0 | 0 |
R3 | Near | Back | Right | Move right | y1^y4^y5 | 0.18 | −0.05 | −0.009 |
R4 | Near | Back | Fwd | Move fwd | y1^y4^y6 | 0.18 | −0.025 | −0.0045 |
R5 | Middle | Right | Back | Move back | y2^y3^y5 | 0.4 | 0.025 | 0.01 |
R6 | Middle | Right | Stop | Stop | y2^y3^y6 | 0.48 | 0 | 0 |
R7 | Far | Back | Left | Move left | y2^y4^y5 | 0.18 | 0.05 | 0.009 |
R8 | Far | Left | Back | Move back | y2^y4^y6 | 0.18 | 0.025 | 0.0045 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayyaba, S.; Ashraf, M.W.; Alquthami, T.; Ahmad, Z.; Manzoor, S. Fuzzy-Based Approach Using IoT Devices for Smart Home to Assist Blind People for Navigation. Sensors 2020, 20, 3674. https://doi.org/10.3390/s20133674
Tayyaba S, Ashraf MW, Alquthami T, Ahmad Z, Manzoor S. Fuzzy-Based Approach Using IoT Devices for Smart Home to Assist Blind People for Navigation. Sensors. 2020; 20(13):3674. https://doi.org/10.3390/s20133674
Chicago/Turabian StyleTayyaba, Shahzadi, Muhammad Waseem Ashraf, Thamer Alquthami, Zubair Ahmad, and Saher Manzoor. 2020. "Fuzzy-Based Approach Using IoT Devices for Smart Home to Assist Blind People for Navigation" Sensors 20, no. 13: 3674. https://doi.org/10.3390/s20133674
APA StyleTayyaba, S., Ashraf, M. W., Alquthami, T., Ahmad, Z., & Manzoor, S. (2020). Fuzzy-Based Approach Using IoT Devices for Smart Home to Assist Blind People for Navigation. Sensors, 20(13), 3674. https://doi.org/10.3390/s20133674