Optimization of AIN Composite Structure Based Surface Acoustic Wave Device for Potential Sensing at Extremely High Temperature
Abstract
:1. Introduction
2. Propagation Characteristics of the surface Acoustic Wave (SAW) Sensor
3. Optimized Sensor Device Characterizing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aubert, T.; Elmazria, O.; Assouar, B.; Blampain, E.; Weber, S. Investigations on AlN/sapphire piezoelectric bilayer structure for high-temperature SAW applications. Ferroelectr. Freq. Control 2012, 59, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Watkins, S.E.; Huang, J.; Yuan, L.; Xiao, H. Microcavity strain sensor for high temperature applications. Opt. Eng. 2014, 53, 017105. [Google Scholar] [CrossRef] [Green Version]
- Omar, E.; Thierry, A. Wireless SAW sensor for high temperature applications: Material point of view. Proc. SPIE Int. Soc. Opt. Eng. 2011, 8066, 487–504. [Google Scholar]
- Wang, W.; Lee, K.; Woo, I.; Park, I.; Yang, S. Optimal design on SAW sensor for wireless pressure measurement based on reflective delay line. Sens. Actuators A Phys. 2007, 139, 2–6. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A 2007, 365, 303–315. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, Y.; Kong, H.; Xin, J.; Frantz, E.; Shrout, T.R. Characterization of high temperature piezoelectric crystals with an ordered langasite structure. J. Appl. Phys. 2009, 105, 114107. [Google Scholar] [CrossRef]
- Johnson, J.A.; Kim, K.; Zhang, S.; Wu, D.; Jiang, X. High-temperature acoustic emission sensing tests using a Yttrium calcium oxyborate sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 805–814. [Google Scholar] [CrossRef]
- Lin, C.M.; Yen, T.T.; Felmetsger, V.V.; Hopcroft, M.A.; Kuypers, J.H.; Pisano, A.P. Thermally compensated aluminum nitride Lamb wave resonators for high temperature applications. Appl. Phys. Lett. 2010, 97, 083501. [Google Scholar] [CrossRef]
- Naumenko, N.; Nicolay, P. AlN/Pt/LN structure for SAW sensors capable of operating at high temperature. Appl. Phys. Lett. 2017, 111, 073507. [Google Scholar] [CrossRef]
- Caliendo, C. Theoretical investigation of high velocity, temperature compensated rayleigh waves along AlN/SiC substrates for high sensitivity mass sensors. Appl. Phys. Lett. 2012, 100, 021905. [Google Scholar] [CrossRef]
- Chuan, L.; Xingzhao, L.; Bin, P.; Lin, S.; Yanrong, L. AlN-based surface acoustic wave resonators on platinum bottom electrodes for high-temperature sensing applications. Rare Met. 2016, 35, 408–411. [Google Scholar]
- Kuo, J.T.W.; Yu, L.; Meng, E. Micromachined Thermal Flow Sensors—A Review. Micromachines 2012, 3, 550–573. [Google Scholar] [CrossRef] [Green Version]
- Chung, G.S. Fabrication and characterization of micro-heaters with low-power consumption using SOI membrane and trench structures. Sens. Actuators A 2004, 112, 55–60. [Google Scholar] [CrossRef]
- Wang, W.; Fan, S.; Liang, Y.; He, S.; Pan, Y.; Zhang, C.; Dong, C.A. Enhanced Sensitivity of a Love Wave-Based Methane Gas Sensor Incorporating a Cryptophane—A Thin Film. Sensors 2018, 18, 3247. [Google Scholar] [CrossRef] [Green Version]
- Aubert, T.; Assouar, M.B.; Legrani, O.; Elmazria, O.; Tiusan, C.; Robert, S. Highly textured growth of AlN films on sapphire by magnetron sputtering for high temperature surface acoustic wave applications. J. Vac. Sci. Technol. A Vac. Surf. Film. 2011, 29, 021010. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Wuemin, W.; Ling, L.; Dawei, Y.; Liping, P.; Long, F.; Weidong, W. The investigation of integrated SAW strain sensor based on AlN/TC4 structure. Sens. Actuators A Phys. 2019, 293, 14–20. [Google Scholar]
- Shaoxu, D.; Mengke, Q.; Cong, C.; Hong, Z.; Yong, W.; Zhengguo, S. High-temperature high-sensitivity aln-on-soi lamb wave resonant strain sensor. AIP Adv. 2018, 8, 065315. [Google Scholar]
- Monika, T.; Vinay, G.; Abhai, M.; Sreenivas, K. Temperature stability of c-axis oriented LiNBO3/SiO2/Si thin film layered structures. J. Phys. D Appl. Phys. 2001, 34, 2267. [Google Scholar]
- Talbi, A.; Soltani, A.; Mortet, V.; Gerbedoen, J.C.; De Jaeger, J.C.; Pernod, P. Theoretical study of Lamb acoustic waves characteristics in a AlN/diamond composite membranes for Super High Frequency range operating devices. Diam. Relat. Mater. 2012, 22, 66–69. [Google Scholar] [CrossRef]
- Reeber, R.R.; Wang, K. High temperature elastic constant prediction of some group III-Nitrides. MRS Internet J. Nitride Semicond. Res. 2001, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tsubouchi, K.; Sugai, K.; Mikoshiba, N. AlN Material Constants Evaluation and SAW Properties on AlN/Al2O3 and AlN/Si. In Proceedings of the 2005 IEEE Ultrasonics Symposium, Rotterdam, The Netherlands, 18–21 September 2005. [Google Scholar]
- Grondel, S.; Paget, C.; Delebarre, C.; Assaad, J.; Levin, K. Design of optimal configuration for generating A0 Lamb mode in a composite plate using piezoceramic transducers. J. Acoust. Soc. Am. 2002, 112, 84. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.J.S.; Cawley, P.; Kao, J.Y.; Diligent, O. The low frequency reflection characteristics of the fundamental antisymmetric lamb wave a0 from a rectangular notch in a plate. J. Acoust. Soc. Am. 2002, 112, 2612. [Google Scholar] [CrossRef]
- Lin, C.M.; Yantchev, V.; Zou, J.; Chen, Y.Y.; Pisano, A.P. Micromachined One-Port Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode. J. Microelectromechanical Syst. 2014, 23, 78–91. [Google Scholar] [CrossRef]
- Tang, G.; Han, T.; Teshigahara, A.; Iwaki, T.; Hashimoto, K.Y. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures. Jpn. J. Appl. Phys. 2016, 55, 07KD07. [Google Scholar] [CrossRef]
- Mauder, A. SAW gas sensors: Comparison between delay line and two port resonator. Sens. Actuators B Chem. 1995, 26, 187–190. [Google Scholar] [CrossRef]
- Wang, W.; Xue, X.F.; Shao, X.T.; Wang, J.M. Wireless passive surface acoustic wave temperature measurement system based on reflective delay line structure. Acta Acust. 2014, 4, 473–478. [Google Scholar]
Mode | λ (μm) | Number of IDT Pairs | Number of Reflector Pairs | Aperture | Gap |
---|---|---|---|---|---|
Mode 1 | 13.18 | 120 | 100 | 100 λ | 0.625 λ |
Mode 2 | 13.18 | 100 | 80 | 100 λ | 0.625 λ |
Mode 3 | 13.18 | 100 | 100 | 100 λ | 0.625 λ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Wang, W.; Li, X.; Jia, Y.; Sun, Y.; Liu, M. Optimization of AIN Composite Structure Based Surface Acoustic Wave Device for Potential Sensing at Extremely High Temperature. Sensors 2020, 20, 4160. https://doi.org/10.3390/s20154160
Fan S, Wang W, Li X, Jia Y, Sun Y, Liu M. Optimization of AIN Composite Structure Based Surface Acoustic Wave Device for Potential Sensing at Extremely High Temperature. Sensors. 2020; 20(15):4160. https://doi.org/10.3390/s20154160
Chicago/Turabian StyleFan, Shuyao, Wen Wang, Xueling Li, Yana Jia, Yuan Sun, and Mengwei Liu. 2020. "Optimization of AIN Composite Structure Based Surface Acoustic Wave Device for Potential Sensing at Extremely High Temperature" Sensors 20, no. 15: 4160. https://doi.org/10.3390/s20154160
APA StyleFan, S., Wang, W., Li, X., Jia, Y., Sun, Y., & Liu, M. (2020). Optimization of AIN Composite Structure Based Surface Acoustic Wave Device for Potential Sensing at Extremely High Temperature. Sensors, 20(15), 4160. https://doi.org/10.3390/s20154160