An Input-Perceptual Reconstruction Adversarial Network for Paired Image-to-Image Conversion
Abstract
:1. Introduction
2. Related Work
- The principle, to perfectly map targeted output images must not be affected by the texture of the given input images, which should be the essential pillar in the formation of a generator structure.
- The visual quality of constructed images should also be considered in the optimization method rather than just relying on qualitative performance metric values. This principle can guarantee that the generated images look visually appealing and realistic.
- This study introduces a novel approach to deal with imperfect paired datasets and the method of feeding extra information into the objective function in the form of input-perceptual losses calculated between the input images and the target images for imperfect paired datasets.
- We introduce an optimized method based on pix2pix-cGAN and conditional GANs (cGANs) frameworks for existing imperfect pair datasets.
- We also analyzed the primary two different configurations of the generator structure, and the results show the proposed approach is better than previous methods.
- We achieve both qualitative and quantitative results by using IP-RAN, which indicates that the adopted technique produces better results than the baseline models.
3. Methodology
3.1. Objective
3.2. Network Architecture
4. Experiments and Results
4.1. Datasets
4.2. Model and Parameter Details
4.3. Evaluation Criteria
4.4. Analysis of Different Loss Functions
- L1, by setting and in Equation (10), causes to generate blurry outputs.
- The cGAN, by setting and in Equation (10), leads to much sharper outputs but brings visual artifacts.
- L1 and cGAN together, by setting in Equation (10) causes sensible results but still far from the targeted outputs.
- The results of the proposed loss function in Equation (10), show a significant improvement in quality and similarity to the targeted results.
4.5. Analysis of Different Generator Configuration
4.6. Comparison with Baseline
- Pix2Pix-cGAN [23]: Pix2pix is designed for paired image datasets based on the cGAN architecture. Pix2Pix utilizes L1 reconstruction loss and adversarial loss to train its model for the conversion of input images to output images.
- UTN-GAN [29]: UTN-GAN introduced a GAN-based unsupervised transformation network with hierarchical representations learning and weight-sharing technique. The reconstruction network learns the hierarchical representations of the input image, and the mutual high-level representations are shared with the translation network to realize the target-domain oriented image translation.
- PAN [25]: PAN can learn a mapping function to transform input images to targeted output images. PAN consists of a image transformer network and a discriminator network. In PAN, the discriminator measures perceptual losses on different layers and identifies between real and fake images. PAN uses perceptual adversarial losses to train the generator model.
- iPANs [63]: iPANs used U-NET as image transformation network and perceptual similarity network as a discriminator network. iPANs introduced new paired input conditions for the replacement of conditional adversarial networks to improve the image-to-image translation tasks. In this method the ground-truth images which are identical images are the real pair, whereas the generated images and ground-truth images are the fake pair.
- ID-CGAN [3]: ID-CGAN introduced to handle the image de-raining task by combining the pixel-wise least-squares reconstruction loss, conditional generative adversarial losses, and perceptual losses. ID-CGAN used cGAN structure to map from rainy images to de-rainy images. ID-CGAN consists of a dense generator to transform from an input image to its counter-part output images. ID-CGAN used the pre-trained VGG-16 network to calculate the perceptual losses between generated and ground-truth images.
4.6.1. Comparison with Pix2Pix-cGAN, PAN, UTN-GAN and iPANs
4.6.2. Comparison with UTN-GAN, ID-CGAN and iPANs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Bertalmio, M.; Sapiro, G.; Caselles, V.; Ballester, C. Image Inpainting. Available online: http://rbrad.ulbsibiu.ro/teaching/courses/docs/acs/bertalmi.pdf (accessed on 2 May 2020).
- Zhang, H.; Sindagi, V.; Patel, V.M. Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst. VideoTechnol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Ramwala, O.A.; Paunwala, C.N.; Paunwala, M.C. Image De-Raining for Driver Assistance Systems using U-Net based GAN. In Proceedings of the 2019 IEEE International Conference on Signal Processing, Information, Communication & Systems (SPICSCON), Dhaka, Bangladesh, 28–30 November 2019. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. arXiv 2016, arXiv:1603.08155. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. Available online: http://iie.fing.edu.uy/~mdelbra/DL2018/papers/11_2017_Ledig_CVPR.pdf (accessed on 3 May 2020).
- Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-Resolution Image Synthesis and Semantic Manipulation with Conditional Gans. Available online: https://davidwatkinsvalls.com/files/papers/1711.11585.pdf (accessed on 3 May 2020).
- Nasrollahi, K.; Moeslund, T.B. Super-resolution: A comprehensive survey. Mach. Vis. Appl. 2014, 25, 1423–1468. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Cheng, X.; Qiao, Y.; Zhang, Y. Crop Leaf Disease Image Super-Resolution and Identification with Dual Attention and Topology Fusion Generative Adversarial Network. IEEE Access 2020, 8, 55724–55735. [Google Scholar] [CrossRef]
- Elad, M.; Aharon, M. Image Denoising via Sparse and Redundant Representations over Learned Dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef]
- Kumar, R.; Maji, S.K. A Novel Framework for Denoised High Resolution Generative Adversarial Network–DHRGAN. In Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February 2020. [Google Scholar]
- Matsui, T.; Ikehara, M. GAN-Based Rain Noise Removal from Single-Image Considering Rain Composite Models. IEEE Access 2020, 8, 40892–40900. [Google Scholar] [CrossRef]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. Available online: http://liaoqing.me/course/AI%20Project/[2016%20CVPR]Image%20Style%20Transfer%20Using%20Convolutional%20Neural%20Networks.pdf (accessed on 4 May 2020).
- Khan, M.W. A survey: Image segmentation techniques. Int. J. Future Comput. Commun. 2014, 3, 89. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. Infogan: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. Available online: http://resources.dbgns.com/study/GAN/InfoGAN.pdf (accessed on 4 May 2020).
- Zhang, R.; Isola, P.; Efros, A.A. Colorful Image Colorization. Available online: https://richzhang.github.io/colorization/resources/colorful_eccv2016.pdf (accessed on 4 May 2020).
- Chen, Y.; Lai, Y.-K.; Liu, Y.-J. Transforming Photos to Comics Using Convolutional Neural Networks. Available online: https://core.ac.uk/download/pdf/82967487.pdf (accessed on 4 May 2020).
- Cheng, Z.; Yang, Q.; Sheng, B. Deep colorization. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. Available online: https://computing.ece.vt.edu/~f15ece6504/slides/L13_FCN.pdf (accessed on 4 May 2020).
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. Available online: https://chyson.net/papers/Generative%20Adversarial%20Nets.pdf (accessed on 4 May 2020).
- Cheng, K.; Tahir, R.; Eric, L.K.; Li, M. An analysis of generative adversarial networks and variants for image synthesis on MNIST dataset. Multimed. Tools Appl. 2020, 1–28. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. Available online: https://gangw.web.illinois.edu/class/cs598/papers/CVPR17-img2img.pdf (accessed on 4 May 2020).
- Chen, X.; Xu, C.; Yang, X.; Song, L.; Tao, D. Gated-gan: Adversarial gated networks for multi-collection style transfer. IEEE Trans. Image Process. 2018, 28, 546–560. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.; Wang, C.; Tao, D. Perceptual Adversarial Networks for Image-to-Image Transformation. IEEE Trans. Image Process. 2018, 27, 4066–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. Available online: http://resources.dbgns.com/study/GAN/conditional_gan.pdf (accessed on 4 May 2020).
- Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. Deblurgan: Blind Motion Deblurring Using Conditional Adversarial Networks. Available online: http://www.gwylab.com/pdf/deblur-gan.pdf (accessed on 4 May 2020).
- Regmi, K.; Borji, A. Cross-View Image Synthesis Using Conditional Gans. Available online: https://openaccess.thecvf.com/content_cvpr_2018/papers_backup/Regmi_Cross-View_Image_Synthesis_CVPR_2018_paper.pdf (accessed on 4 May 2020).
- Ge, H.; Yao, Y.; Chen, Z.; Sun, L. Unsupervised transformation network based on GANs for target-domain oriented image translation. IEEE Access 2018, 6, 61342–61350. [Google Scholar] [CrossRef]
- Wu, C.-H.; Horng, S.-J.; Lee, P.-Z. A new computation of shape moments via quadtree decomposition. Pattern Recognit. 2001, 34, 1319–1330. [Google Scholar] [CrossRef]
- Ravuri, S.; Mohamed, S.; Rosca, M.; Vinyals, O. Learning implicit generative models with the method of learned moments. arXiv 2018, arXiv:1806.11006. [Google Scholar]
- Santos, C.N.D.; Mroueh, Y.; Padhi, I.; Dognin, P. Learning Implicit Generative Models by Matching Perceptual Features. Available online: https://www.researchgate.net/profile/Cicero_Dos_Santos2/publication/332264118_Learning_Implicit_Generative_Models_by_Matching_Perceptual_Features/links/5d1e0ff6a6fdcc2462c0cccb/Learning-Implicit-Generative-Models-by-Matching-Perceptual-Features.pdf (accessed on 7 May 2020).
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. Imagenet large scale visual recognition challenge. Int. J Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Huh, M.; Agrawal, P.; Efros, A.A. What makes ImageNet good for transfer learning? arXiv 2016, arXiv:1608.08614. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 13. [Google Scholar] [CrossRef]
- Eigen, D.; Fergus, R. Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture. Available online: http://iie.fing.edu.uy/~mdelbra/DL2017/papers/09_2015_Eigen_ICCV.pdf (accessed on 8 May 2020).
- Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1915–1929. [Google Scholar] [CrossRef] [Green Version]
- Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. Available online: http://www-prima.imag.fr/Prima/jlc/Courses/2018/PRML/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf (accessed on 8 May 2020).
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A review on deep learning techniques applied to semantic segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar]
- Fu, X.; Huang, J.; Ding, X.; Liao, Y.; Paisley, J. Clearing the skies: A deep network architecture for single-image rain removal. IEEE Trans. Image Process. 2017, 26, 2944–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Huang, J.; Zeng, D.; Huang, Y.; Ding, X.; Paisley, J. Removing Rain from Single Images via a Deep Detail Network. Available online: https://xueyangfu.github.io/paper/2017/cvpr/cvpr2017.pdf (accessed on 8 May 2020).
- Ružić, T.; Pižurica, A. Context-aware patch-based image inpainting using Markov random field modeling. IEEE Trans. Image Process. 2014, 24, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Chang, C.-C.; Chiu, Y.-P. A novel joint data-hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans. Image Process. 2013, 23, 969–978. [Google Scholar] [CrossRef]
- Eigen, D.; Puhrsch, C.; Fergus, R. Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network. Available online: http://datascienceassn.org/sites/default/files/Depth%20Map%20Prediction%20from%20a%20Single%20Image%20using%20a%20Multi-Scale%20Deep%20Network.pdf (accessed on 9 May 2020).
- Liu, F.; Shen, C.; Lin, G. Deep Convolutional Neural Fields for Depth Estimation from a Single Image. Available online: https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_078.pdf (accessed on 9 May 2020).
- Berthelot, D.; Schumm, T.; Metz, L. Began: Boundary equilibrium generative adversarial networks. arXiv 2017, arXiv:1703.10717. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Brock, A.; Lim, T.; Ritchie, J.M.; Weston, N. Neural photo editing with introspective adversarial networks. arXiv 2016, arXiv:1609.07093. [Google Scholar]
- Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. Generative adversarial text to image synthesis. arXiv 2016, arXiv:1605.05396. [Google Scholar]
- Vondrick, C.; Pirsiavash, H.; Torralba, A. Generating Videos with Scene Dynamics. Available online: https://pdfs.semanticscholar.org/7188/6726f0a1b4075a7213499f8f25d7c9fb4143.pdf (accessed on 9 May 2020).
- Wu, J.; Zhang, C.; Xue, T.; Freeman, B.; Tenenbaum, J. Learning a Probabilistic Latent Space of Object Shapes via 3d Generative-Adversarial Modeling. Available online: https://core.ac.uk/download/pdf/141473151.pdf (accessed on 9 May 2020).
- Lotter, W.; Kreiman, G.; Cox, D. Unsupervised learning of visual structure using predictive generative networks. arXiv 2015, arXiv:1511.06380. [Google Scholar]
- Zhu, J.-Y.; Krähenbühl, P.; Shechtman, E.; Efros, A.A. Generative Visual Manipulation on the Natural Image Manifold. Available online: https://www.philkr.net/media/zhu2016generative.pdf (accessed on 9 May 2020).
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved Training of Wasserstein Gans. Available online: http://www.cs.utoronto.ca/~bonner/courses/2020s/csc2547/papers/adversarial/improved-training-of-WGANs,-gulrajani,-nips2017.pdf (accessed on 9 May 2020).
- Zhao, J.; Mathieu, M.; LeCun, Y. Energy-based generative adversarial network. arXiv 2016, arXiv:1609.03126. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017, arXiv:1710.10196. [Google Scholar]
- Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. arXiv 2018, arXiv:1802.05957. [Google Scholar]
- Wang, C.; Xu, C.; Yao, X.; Tao, D. Evolutionary generative adversarial networks. IEEE Trans. Evol. Comput. 2019, 23, 921–934. [Google Scholar] [CrossRef] [Green Version]
- Denton, E.L.; Chintala, S.; Fergus, R. Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks. Available online: https://research.fb.com/wp-content/uploads/2016/11/deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf (accessed on 13 May 2020).
- Li, J.; Liang, X.; Wei, Y.; Xu, T.; Feng, J.; Yan, S. Perceptual generative adversarial networks for small object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Sung, T.L.; Lee, H.J. Image-to-Image Translation Using Identical-Pair Adversarial Networks. Appl. Sci. 2019, 9, 2668. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. Available online: https://pdfs.semanticscholar.org/c43d/954cf8133e6254499f3d68e45218067e4941.pdf (accessed on 13 May 2020).
- Yi, Z.; Zhang, H.; Tan, P.; Gong, M. Dualgan: Unsupervised Dual Learning for Image-to-Image Translation. Available online: https://www.cs.sfu.ca/~haoz/pubs/yi_iccv17_dualGAN.pdf (accessed on 14 May 2020).
- Kim, T.; Cha, M.; Kim, H.; Lee, J.K.; Kim, J. Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Available online: http://axon.cs.byu.edu/Dan/673/papers/kim.pdf (accessed on 14 May 2020).
- Chen, Q.; Koltun, V. Photographic Image Synthesis with Cascaded Refinement Networks. Available online: https://www.cqf.io/papers/Photographic_Image_Synthesis_ICCV2017.pdf (accessed on 15 May 2020).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Available online: http://www.cs.sjtu.edu.cn/~shengbin/course/cg/Papers%20for%20Selection/Deep%20Residual%20Learning%20for%20Image%20Recognition.pdf (accessed on 15 May 2020).
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least Squares Generative Adversarial Networks. Available online: https://www.researchgate.net/profile/Haoran_Xie/publication/322060458_Least_Squares_Generative_Adversarial_Networks/links/5bfad008a6fdcc538819cf3e/Least-Squares-Generative-Adversarial-Networks.pdf (accessed on 15 May 2020).
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]
- Li, C.; Wand, M. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. Available online: https://arxiv.org/pdf/1604.04382v1.pdf (accessed on 15 May 2020).
- Tyleček, R.; Šára, R. Spatial Pattern Templates for Recognition of Objects with Regular Structure. Available online: https://pdfs.semanticscholar.org/3edc/81db7c70d9123ea04829a98fc9fd62b29b1d.pdf (accessed on 16 May 2020).
- Yu, A.; Grauman, K. Fine-Grained Visual Comparisons with Local Learning. Available online: https://aronyu.io/vision/papers/cvpr14/aron-cvpr14.pdf (accessed on 16 May 2020).
- Xie, S.; Tu, Z. Holistically-Nested Edge Detection. Available online: https://pages.ucsd.edu/~ztu/publication/iccv15_hed.pdf (accessed on 16 May 2020).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans. Image Process. 2006, 15, 430–444. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Available online: http://papers.neurips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf (accessed on 16 May 2020).
Methods | Advantages | Disadvantages |
---|---|---|
CNNs (Reconstruction L1 and L2 losses) based methods [1,17] | Need less computation as one network is to trained. | Need big datasets to train |
Fast and easy to train | Produce blurry results | |
Simple GAN (Adversarial Loss) based methods [21,26] | Can be trained with small datasets | More computation than CNNs as two different networks to be trained |
Produces sharp and realistic images | GAN networks are difficult to train | |
There is an image artifacts problem | ||
Adversarial, reconstruction and perceptual losses with skip-connections in generator network based methods [3,4,23,25,29,63] | Achieve good quality results than CNNs and simple GAN by combining two loss functions | Skip-connections affect the quality of generated images by directly passing unwanted input information to the output of the network. |
Skip-connections in generator configuration reduce vanishing gradient problem | ||
Proposed method | This method adds extra information to the objective function to optimize the results. | Need to calculate input-perceptual losses which increase training time |
Use the Resnet bottleneck structure in the generator configuration to reduce the vanishing gradient problem. | ||
Achieves excellent results visually and quantitatively |
Operation | Pre-Reflection Padding | Kernel Size | Stride | Non-Linearity | Feature Maps | |
---|---|---|---|---|---|---|
Encoder entry 2 | Convolution | 3 | 7 | 1 | ReLU | 64 |
Convolution | 3 | 2 | ReLU | 128 | ||
Convolution | 3 | 2 | ReLU | 256 | ||
Residual Blocks | Residual block | 1 | 3 | 1 | ReLU | 256 |
Residual block | 1 | 3 | 1 | ReLU | 256 | |
Residual block | 1 | 3 | 1 | ReLU | 256 | |
Residual block | 1 | 3 | 1 | ReLU | 256 | |
Residual block | 1 | 3 | 1 | ReLU | 256 | |
Residual block | 1 | 3 | 1 | ReLU | 256 | |
Residual block | 1 | 3 | 1 | ReLU | 256 | |
Residual block | 1 | 3 | 1 | ReLU | 256 | |
Residual block | 1 | 3 | 1 | ReLU | 256 | |
Decoder | Deconvolutional | 3 | 2 | ReLU | 128 | |
Deconvolutional | 3 | 2 | ReLU | 256 | ||
Convolutional | 3 | 7 | 1 | Tanh | 256 |
PSNR(dB) | SSIM | UQI | VIF | FID | |
---|---|---|---|---|---|
L1 | 13.43 | 0.2837 | 0.8186 | 0.0627 | 176.74 |
cGAN | 11.86 | 0.1996 | 0.7722 | 0.0399 | 111.00 |
L1+cGAN=CGAN | 12.80 | 0.2399 | 0.8035 | 0.0480 | 113.53 |
IP-RAN | 12.84 | 0.2426 | 0.8052 | 0.0488 | 110.29 |
PSNR(dB) | SSIM | UQI | VIF | FID | |
---|---|---|---|---|---|
Pix2Pix-cGAN | 13.37 | 0.2559 | 0.8195 | 0.0541 | 113.53 |
UTN-GAN | 12.78 | 0.2362 | 0.8016 | 0.0481 | 111.86 |
PAN | 12.82 | 0.2370 | 0.8030 | 0.0477 | 112.47 |
iPANs | 11.46 | 0.1765 | 0.7603 | 0.0382 | 140.70 |
IP-RAN | 12.84 | 0.2426 | 0.8052 | 0.0488 | 110.29 |
PSNR(dB) | SSIM | UQI | VIF | FID | |
---|---|---|---|---|---|
Pix2Pix-cGAN | 19.33 | 0.7569 | 0.9220 | 0.2092 | 59.93 |
UTN-GAN | 15.41 | 0.6588 | 0.8255 | 0.1786 | 104.9 |
PAN | 19.11 | 0.7389 | 0.9187 | 0.2034 | 62.13 |
iPANs | 15.71 | 0.6671 | 0.8444 | 0.1778 | 117.1 |
IP-RAN | 19.42 | 0.7608 | 0.9179 | 0.2153 | 62.15 |
PSNR(dB) | SSIM | UQI | VIF | FID | |
---|---|---|---|---|---|
UTN-GAN | 21.81 | 0.7325 | 0.9056 | 0.2939 | 127.4 |
ID-CGAN | 24.42 | 0.8490 | 0.9433 | 0.3708 | 76.71 |
iPANs | 22.44 | 0.7687 | 0.9252 | 0.3101 | 112.72 |
IP-RAN | 23.69 | 0.8518 | 0.9412 | 0.3740 | 75.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Jin, W.; Ahmad, M.; Naqvi, R.A.; Wang, D. An Input-Perceptual Reconstruction Adversarial Network for Paired Image-to-Image Conversion. Sensors 2020, 20, 4161. https://doi.org/10.3390/s20154161
Khan A, Jin W, Ahmad M, Naqvi RA, Wang D. An Input-Perceptual Reconstruction Adversarial Network for Paired Image-to-Image Conversion. Sensors. 2020; 20(15):4161. https://doi.org/10.3390/s20154161
Chicago/Turabian StyleKhan, Aamir, Weidong Jin, Muqeet Ahmad, Rizwan Ali Naqvi, and Desheng Wang. 2020. "An Input-Perceptual Reconstruction Adversarial Network for Paired Image-to-Image Conversion" Sensors 20, no. 15: 4161. https://doi.org/10.3390/s20154161
APA StyleKhan, A., Jin, W., Ahmad, M., Naqvi, R. A., & Wang, D. (2020). An Input-Perceptual Reconstruction Adversarial Network for Paired Image-to-Image Conversion. Sensors, 20(15), 4161. https://doi.org/10.3390/s20154161