A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Auxiliary Data
2.2.2. Satellite Data
2.2.3. Reference LST
2.3. Methodology
2.3.1. LST Fusion with pMSRAFM
2.3.2. Adjustment for HSR Comparison
2.3.3. Accuracy Assessment
3. Results
3.1. Fusion Results of Case 1
3.1.1. Comparison with MODIS LST
3.1.2. Comparison with Landsat-Derived LST
3.1.3. Validation with In Situ Observations
3.2. Fused Results of Case 2
3.2.1. Comparison with MODIS LST
3.2.2. Comparison with Landsat-Derived LST
3.2.3. Validation with In Situ Observations
3.3. Comparison with Reference LSTs with Adjustment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, S.; Bhardwaj, A.; Singh, A.; Sam, L.; Shekhar, M.; Martin-Torres, J.; Zorzano, M.-P. Quantifying the Congruence between Air and Land Surface Temperatures for Various Climatic and Elevation Zones of Western Himalaya. Remote Sens. 2019, 11, 2889. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. Estimating very high resolution urban surface temperature using a spectral unmixing and thermal mixing approach. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 155–164. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Yu, P.P. 5.12—Land Surface Temperature Product Development for JPSS and GOES-R Missions. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 284–303. ISBN 978-0-12-803221-3. [Google Scholar]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sens. Environ. 2013, 131, 262–274. [Google Scholar] [CrossRef]
- Shen, H.; Meng, X.; Zhang, L. An integrated framework for the spatio–temporal–spectral fusion of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7135–7148. [Google Scholar] [CrossRef]
- Peng, Z.Q.; Xin, X.; Jiao, J.J.; Zhou, T.; Liu, Q. Remote sensing algorithm for surface evapotranspiration considering landscape and statistical effects on mixed pixels. Hydrol. Earth Syst. Sci. 2016, 20, 4409–4438. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Nedbal, V.; Brom, J. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data. Sci. Total Environ. 2018, 633, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, Y.; Fu, Y.; Pan, Y.; Yu, L.; Xin, Q. High resolution mapping of cropping cycles by fusion of Landsat and MODIS data. Remote Sens. 2017, 9, 1232. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.M.; López-Urrea, R.; Dona, C.; Caselles, V.; González-Piqueras, J.; Niclòs, R. Modeling evapotranspiration in a spring wheat from thermal radiometry: Crop coefficients and E/T partitioning. Irrig. Sci. 2015, 33, 399–410. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q. Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007. Remote Sens. Environ. 2012, 117, 57–71. [Google Scholar] [CrossRef]
- Westermann, S.; Ostby, T.I.; Gisnäs, K.; Schuler, T.V.; Etzelmüller, B. A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data. Cryosphere 2015, 9, 1303–1319. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kumar, R.; Bhardwaj, A.; Sam, L.; Shekhar, M.; Singh, A.; Kumar, R.; Gupta, A. Changing climate and glacio-hydrology in Indian Himalayan Region: A review. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 393–410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, F.; Zhang, G.; He, X.; Tian, L. Evaluation of cloud effects on air temperature estimation using MODIS LST based on ground measurements over the Tibetan Plateau. Atmos. Chem. Phys. 2016, 16, 13681–13696. [Google Scholar] [CrossRef] [Green Version]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.; Remedios, J.; et al. Land surface temperature product validation best practice protocol version 1.1. In CEOS Validation Best Practice Protocols; Land Product Validation Subgroup (WGCV/CEOS): Washington, DC, USA, 2018. [Google Scholar]
- Metz, M.; Andreo, V.; Neteler, M. A New Fully gap-free time series of land surface temperature from MODIS LST data. Remote Sens. 2017, 9, 1333. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.-B.; Li, Z.-L.; Leng, P. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sens. Environ. 2017, 195, 107–117. [Google Scholar] [CrossRef]
- Quan, J.; Zhan, W.; Ma, T.; Du, Y.; Guo, Z.; Qin, B. An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes. Remote Sens. Environ. 2018, 206, 403–423. [Google Scholar] [CrossRef]
- Chybicki, A.; Łubniewski, Z. Comparison of direct and inverse methods of satellite observations downscaling for the coastal zone area. Hydroacoustics 2016, 19, 55–64. [Google Scholar]
- Wu, M.; Wu, C.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Hao, P.-Y. An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery. Inf. Fusion 2016, 31, 14–25. [Google Scholar] [CrossRef]
- Wan, Z. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD); Inst. Comput. Earth Syst. Sci. Univ.: Santa Barbara, CA, USA, 1999; pp. 1–17. [Google Scholar]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, B.; Song, H. A robust adaptive spatial and temporal image fusion model for complex land surface changes. Remote Sens. Environ. 2018, 208, 42–62. [Google Scholar] [CrossRef]
- Wu, P.; Shen, H.; Ai, T.; Liu, Y. Land-surface temperature retrieval at high spatial and temporal resolutions based on multi-sensor fusion. Int. J. Digit. Earth 2013, 6, 113–133. [Google Scholar] [CrossRef]
- Zhang, W.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Lei, G.; Qin, Z.; Huang, C. An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data. Remote Sens. 2013, 5, 5346–5368. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.A.; Zhu, X.; Quan, J.; Li, J. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Xu, B. Comparison of spatiotemporal fusion models: A review. Remote Sens. 2015, 7, 1798–1835. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, M.; Zhu, X.X. Data fusion and remote sensing: An ever-growing relationship. IEEE Geosci. Remote Sens. Mag. 2016, 4, 6–23. [Google Scholar] [CrossRef]
- Zhang, H.K.; Huang, B.; Zhang, M.; Cao, K.; Yu, L. A generalization of spatial and temporal fusion methods for remotely sensed surface parameters. Int. J. Remote Sens. 2015, 36, 4411–4445. [Google Scholar] [CrossRef]
- Weng, Q. Land surface temperature data generation. In Techniques and Methods in Urban Remote Sensing; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2019; pp. 91–127. ISBN 9781119307303. [Google Scholar]
- Guo, L.J.; Moore, J.M. Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery. Int. J. Remote Sens. 1998, 19, 2477–2491. [Google Scholar] [CrossRef]
- Nichol, J.E. An emissivity modulation method for spatial enhancement of thermal satellite images in Urban heat island analysis. Photogramm. Eng. Remote Sens. 2009, 75, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Stathopoulou, M.; Cartalis, C. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sens. Environ. 2009, 113, 2592–2605. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Santurri, L.; Selva, M. Spatial resolution enhancement of ASTER thermal bands. In Proceedings of the Image and Signal Processing for Remote Sensing XI; Bruzzone, L., Ed.; SPIE: Bruges, Belgium, 2005; Volume 5982, pp. 411–420. [Google Scholar]
- Atkinson, P.M.; Pardo-Igúzquiza, E.; Olmo, M.C. Downscaling cokriging for super-resolution mapping of continua in remotely sensed images. IEEE Trans. Geosci. Remote. Sens. 2008, 46, 573–580. [Google Scholar] [CrossRef]
- Jeganathan, C.; Hamm, N.A.S.; Mukherjee, S.; Atkinson, P.M.; Raju, P.; Dadhwal, V. Evaluating a thermal image sharpening model over a mixed agricultural landscape in India. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 178–191. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Li, J.; Liu, W. Sharpening thermal imageries: A generalized theoretical framework from an assimilation perspective. IEEE Trans. Geosci. Remote Sens. 2010, 49, 773–789. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Wu, P.; Shen, H.; Zhang, L.; Göttsche, F.-M.; Göttsche, F.-M. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature. Remote Sens. Environ. 2015, 156, 169–181. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J.; Song, H.; Fu, D.; Wong, K. Generating high spatiotemporal resolution land surface temperature for Urban heat island monitoring. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1011–1015. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Hazaymeh, K.; Hassan, Q.K. Spatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images. J. Appl. Remote Sens. 2015, 9, 96095. [Google Scholar] [CrossRef] [Green Version]
- Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [Google Scholar] [CrossRef]
- Kim, J.; Hogue, T.S. Evaluation and sensitivity testing of a coupled Landsat-MODIS downscaling method for land surface temperature and vegetation indices in semi-arid regions. J. Appl. Remote Sens. 2012, 6, 063569-1. [Google Scholar] [CrossRef]
- Shen, H.; Huang, L.; Zhang, L.; Wu, P.; Zeng, C. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- Ping, B.; Meng, Y.; Su, F.-Z. An enhanced linear spatio-temporal fusion method for blending Landsat and MODIS data to synthesize landsat-like imagery. Remote Sens. 2018, 10, 881. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Qin, Z.; Li, W.; Song, C.; Karnieli, A.; Zhao, S. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data. Sensors 2014, 15, 304–330. [Google Scholar] [CrossRef] [Green Version]
- Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Yu, B. Validation of synthetic daily Landsat NDVI time series data generated by the improved spatial and temporal data fusion approach. Inf. Fusion 2018, 40, 34–44. [Google Scholar] [CrossRef]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS); SPIE: Toulouse, France, 2003. [Google Scholar]
- Xu, Z.; Liu, S.; Zhu, Z.; Zhou, J.; Shi, W.; Xu, T.; Yang, X.; Zhang, Y.; He, X. Exploring evapotranspiration changes in a typical endorheic basin through the integrated observatory network. Agric. For. Meteorol. 2020, 290, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Hou, J.; Gu, J.; Zhu, G.; Li, X. Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agric. For. Meteorol. 2017, 244, 82–97. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Yongming, D.; Biao, C.; LIU, Q.; MENG, X.; Hu, Y. Practical split-window algorithm for 772 retrieving land surface temperature from Himawari 8 AHI data. J. Remote Sens. 2017, 21, 702. [Google Scholar] [CrossRef]
- Yu, W.; Ma, M.; Li, Z.; Tan, J.; Wu, A. New scheme for validating remote-sensing land surface temperature products with station observations. Remote Sens. 2017, 9, 1210. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Li, H.; Du, Y.; Cao, B.; Li, B. Retrieval and validation of the land surface temperature derived from Landsat 8 data: A case study of the Heihe River Basin. J. Remote Sens. 2018, 22, 857. [Google Scholar]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe watershed allied telemetry experimental research (HiWater) scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.-C.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2012, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- USGS Landsat 8 (L8) Data Users Handbook (LSDS-1574 version 3.0); USGS, Ed. 2018. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-8-data-users-handbook (accessed on 10 June 2020).
- Taaheri, A.; Rodrigues, K. HDF-EOS to GeoTIFF conversion tool (HEG) stand-alone user’s guide. Tech. Pap. 2015. Available online: https://edhs1.gsfc.nasa.gov/edhs/HEG_Tool/Version2.13/EED2-TP-002_HEG_UsersGuide_2.13.pdf (accessed on 8 June 2020).
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A practical split-window algorithm for estimating land surface temperature from Landsat 8 Data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-based multisensor multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Liu, D.; Pu, R. Downscaling thermal infrared radiance for subpixel Land surface temperature retrieval. Sensors 2008, 8, 2695–2706. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, A.R. Spectral mixture analysis of multispectral thermal infrared images. Remote Sens. Environ. 1992, 42, 137–145. [Google Scholar] [CrossRef]
- Sobrino, J.A. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens. Environ. 2001, 75, 256–266. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Wang, M.; He, G.; Zhang, Z.; Wang, G.; Wang, Z.; Yin, R.; Cui, S.; Wu, Z.; Cao, X. A radiance-based split-window algorithm for land surface temperature retrieval: Theory and application to MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 204–217. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Huang, W.; Niu, Z.; Wang, C. Generating daily synthetic Landsat imagery by combining Landsat and MODIS data. Sensors 2015, 15, 24002–24025. [Google Scholar] [CrossRef] [Green Version]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, F.; Pedrycz, W. Fuzzy C-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 2020, 87, 105928. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Clim. 2011, 32, 2088–2094. [Google Scholar] [CrossRef]
- Chang, T.-C.; Xu, S.S.-D.; Su, S.-F. SSIM-based quality-on-demand energy-saving schemes for OLED displays. IEEE Trans. Syst. Man Cybern. Syst. 2015, 46, 623–635. [Google Scholar] [CrossRef]
- Brunet, D.; Vrscay, E.R.; Wang, Z. On the mathematical properties of the structural similarity index. IEEE Trans. Image Process. 2011, 21, 1488–1499. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Station | Longitude | Latitude | Altitude (m) | Land Cover | Variable/Instrument |
---|---|---|---|---|---|
A’rou superstation (ARC) | 100.46° E | 38.05° N | 3033 | Alpine meadow | Surface temperature/ SI-111(Apogee, USA) |
Yakou Station (YKZ) | 100.24° E | 38.01° N | 4148 | Alpine meadow | |
Jingyangling station (JYL) | 101.12° E | 37.84° N | 3750 | Alpine meadow | |
E’bao station (EBZ) | 100.92° E | 37.95° N | 3294 | Alpine grassland | |
A’rou north-facing station (ANF) | 100.41° E | 37.98° N | 3536 | Alpine grassland | |
A’rou south-facing station (ASF) | 100.52° E | 38.09° N | 3529 | Alpine grassland | |
Huangzangsi station (HZS) | 100.19° E | 38.23° N | 2612 | Farmland |
LST Product | Reference LST | SSIM | d | STD | Bias | RMSE | R | Sample |
---|---|---|---|---|---|---|---|---|
MOD11A1 | 0.50 | 0.75 | 2.18 | 1.95 | 2.92 | 0.71 | 2633 | |
MOD11A1 | 0.51 | 0.76 | 2.07 | 1.68 | 2.67 | 0.70 | 2633 | |
0.65 | 0.76 | 3.00 | 1.79 | 3.49 | 0.73 | 3,490,550 | ||
0.77 | 0.79 | 2.66 | 1.55 | 3.08 | 0.76 | 3,490,550 | ||
MOD11L2_a | 0.69 | 0.57 | 1.12 | 2.71 | 2.93 | 0.83 | 1323 | |
MOD11L2_a | 0.70 | 0.61 | 1.01 | 2.30 | 2.51 | 0.82 | 1323 | |
0.83 | 0.84 | 2.22 | 1.64 | 2.76 | 0.91 | 3,481,102 | ||
0.85 | 0.87 | 1.93 | 1.41 | 2.39 | 0.92 | 3,481,102 | ||
MOD11L2_b | 0.80 | 0.93 | 1.48 | −0.47 | 1.55 | 0.91 | 1184 | |
MOD11L2_b | 0.81 | 0.93 | 1.37 | −0.62 | 1.50 | 0.90 | 1184 | |
0.80 | 0.92 | 1.99 | −0.20 | 2.00 | 0.91 | 3,495,457 | ||
0.88 | 0.94 | 1.69 | 0.03 | 1.69 | 0.92 | 3,495,457 |
LST Product | Reference LST | SSIM | d | STD | Bias | RMSE | R | Sample |
---|---|---|---|---|---|---|---|---|
MOD11A1 | 0.65 | 0.48 | 2.19 | 5.48 | 5.90 | 0.74 | 2808 | |
MOD11A1 | 0.66 | 0.59 | 1.93 | 3.56 | 4.06 | 0.73 | 2808 | |
0.80 | 0.55 | 2.67 | 5.42 | 6.04 | 0.76 | 3,473,959 | ||
0.84 | 0.65 | 2.27 | 3.58 | 4.24 | 0.77 | 3,473,959 | ||
MOD11L2_a | 0.74 | 0.49 | 1.79 | 4.74 | 5.07 | 0.77 | 2048 | |
MOD11L2_a | 0.77 | 0.65 | 1.38 | 2.75 | 3.08 | 0.81 | 2048 | |
0.85 | 0.63 | 2.54 | 4.03 | 4.76 | 0.78 | 3,467,619 | ||
0.87 | 0.76 | 2.07 | 2.21 | 3.03 | 0.81 | 3,467,619 | ||
MOD11L2_b | 0.58 | 0.54 | 2.36 | 5.39 | 5.88 | 0.73 | 1279 | |
MOD11L2_b | 0.58 | 0.66 | 2.13 | 3.35 | 3.97 | 0.72 | 1279 | |
0.88 | 0.67 | 1.86 | 4.44 | 4.82 | 0.89 | 3,434,430 | ||
0.88 | 0.79 | 1.59 | 2.63 | 3.08 | 0.88 | 3,434,430 |
No | Fused LST | Reference LST | d | Bias | RMSE | Adjustment | |||
---|---|---|---|---|---|---|---|---|---|
ΔLST | d | Bias | RMSE | ||||||
Case1 | 0.76 | 1.79 | 3.49 | −0.89 | 0.79 | 0.90 | 3.13 | ||
0.79 | 1.55 | 3.08 | −0.89 | 0.82 | 0.66 | 2.74 | |||
0.84 | 1.64 | 2.76 | −1.44 | 0.89 | 0.20 | 2.23 | |||
0.87 | 1.41 | 2.39 | −1.44 | 0.91 | −0.03 | 1.93 | |||
0.92 | 0.20 | 2.00 | −1.37 | 0.88 | 1.57 | 2.54 | |||
0.94 | −0.03 | 1.69 | −1.37 | 0.91 | 1.33 | 2.16 | |||
Case2 | 0.55 | 5.42 | 6.04 | −5.59 | 0.80 | −0.17 | 2.68 | ||
0.65 | 3.58 | 4.24 | −5.59 | 0.75 | −2.01 | 3.03 | |||
0.63 | 4.03 | 4.76 | −1.83 | 0.74 | 2.20 | 3.36 | |||
0.76 | 2.21 | 3.03 | −1.83 | 0.86 | 0.38 | 2.11 | |||
0.67 | 4.44 | 4.82 | −2.54 | 0.85 | 1.90 | 2.66 | |||
0.79 | 2.63 | 3.08 | −2.54 | 0.93 | 0.09 | 1.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Zhang, Y.; Tan, J.; Li, C.; Ren, Y. A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data. Sensors 2020, 20, 4337. https://doi.org/10.3390/s20154337
Zhao G, Zhang Y, Tan J, Li C, Ren Y. A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data. Sensors. 2020; 20(15):4337. https://doi.org/10.3390/s20154337
Chicago/Turabian StyleZhao, Guohui, Yaonan Zhang, Junlei Tan, Cong Li, and Yanrun Ren. 2020. "A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data" Sensors 20, no. 15: 4337. https://doi.org/10.3390/s20154337
APA StyleZhao, G., Zhang, Y., Tan, J., Li, C., & Ren, Y. (2020). A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data. Sensors, 20(15), 4337. https://doi.org/10.3390/s20154337