Unsupervised Monitoring Vegetation after the Closure of an Ore Processing Site with Multi-Temporal Optical Remote Sensing
Abstract
:1. Introduction
- Creation of the Sentinel-2 time series covering each season for many years;
- Construction of the spectral index base composed of numerous indices specified or used in various contexts (environment monitoring, biodiversity assessment, abiotic impact analysis, precision agriculture…);
- Development of an unsupervised diagnostic methodology based on the multi-temporal fusion methods for change detection and clustering recognition for pattern identification;
- Analysis of the intra-annual and inter-annual variabilities of the most pertinent spectral indices for the studied context in order to define the most appropriate phenological stage and to detect changes in vegetation over several years (temporal evolution comparison of phyto-stabilized vs. natural vegetation areas).
2. Materials and Methods
2.1. Study Area
2.2. Sentinel-2 Satellite Imagery
2.3. Methodology
- Feature extraction: various spectral indices are used to highlight features;
- Feature comparison: a mathematical operator is applied to highlight the changes that occurred in bi-temporal image pairs.
2.3.1. Mask Generation
2.3.2. Spectral Index Database
- NDVI, widely used in many applications [24], is chosen as the reference index and the other indices are compared to this reference index. The best-performing indices are selected and the complementarity of the selected indices are analyzed.
2.3.3. Spectral and Temporal Clustering
Description of the Clustering Methods
- Centroid-based methods, like the K-means algorithm [33,34]: This consists of randomly initializing K centroids to assign each data point (in this case ) to its nearest centroid according to the Euclidean distance. Then, the centroids are recomputed as the mean (in the case of the K-means algorithm) of the data point of each group. These steps are finally repeated until attempting a stopping criterion. For its efficiency, K-means is selected and its instability is solved by running 100 times (value empirically fixed) the algorithm with different centroid seeds and selecting the best output in terms of inertia [33]. Still in this class, another chosen method consists of adding a principal component analysis (PCA) algorithm to reduce the dimension of the time series without losing its variance before applying K-means;
- Neighborhood-based methods, such as spectral clustering [35,36]: The dataset is processed by creating a similarity graph by k-nearest neighbors (graph constructed by connecting each point to its K-nearest neighbors) or ε-neighborhood (graph obtained by associating to each point all points falling inside a circle of radius ε, where ε is a real value). Then, a corresponding Laplacian matrix is created to project the data onto a lower dimensional space, and K-means is applied on its rows. Both the ε-neighborhood and k-nearest neighbor methods are tested. The high computational cost obligates this class of method to provide for some adjustments such as image preprocessing [37,82]. In our case, the preprocessing consists of applying a spectral index.
Performance Comparison of the Clustering Methods
- The computational cost of each algorithm.
- The internal quality of clusters, defined by analyzing the compactness of each cluster and the separation between clusters. This information is evaluated by the silhouette score (or index), which indicates if a pixel belongs to the right cluster [83]. A score close to 1 indicates a good clustering. The average of these scores over all the data indicates if the method has appropriately clustered the data.
- The external quality of clusters, defined by comparing the clusters to externally supplied information. To do this, the Moran’s Index (Moran’s I) is applied to spectral index maps. It is a measure of spatial autocorrelation which can be calculated over all the data (global Moran’s I) or in a specific zone (local Moran’s I or LISA Local Indicators of Spatial Association) [84]. While the global index gives the spatial correlation of the entire dataset by returning a number between -1 and 1, the local index allows drawing a correlation map. Both are used to measure the efficiency of our clustering. The LISA map returns a map described by five classes (Figure 5). Two, usually called High-High or Low-Low, indicate regions which contribute significantly to a positive global spatial autocorrelation outcome; two others, called High-Low and Low-High, indicate those which contribute significantly to a negative autocorrelation outcome and one that indicate those with an insignificant contribution. Thus, the comparison of the classes obtained by the Moran index with the clusters allows us to verify the relevance of our clusters.
Clustering Method Selection
Input Parameter
2.3.4. Image Comparison for Change Identification
2.3.5. Data Analysis
- A global visual analysis and a visual analysis per zone of the various generated maps. The maps are vegetation masks (Section 2.3.1), spectral index maps (Section 2.3.2), change detection maps applied on spectral indices (Section 2.3.4), clustering maps (Section 2.3.3) and change detection applied on clustering maps (Section 2.3.4).
- A statistical analysis per zone. On one hand, the following statistics are calculated from the generated maps: mean, standard deviation (noticed STD), coefficient of variation (also known as RSD, Relative Standard Deviation) [86], median, first and third quartiles (Q1 and Q3, respectively). On the other hand, the temporal evolution of the median and mean are analyzed and median results are provided.
3. Results
3.1. Temporal Evolution of the Vegetation Cover
3.2. Spectral Index Selection
- The NDVI index presents the same phenology stages for all zones except zone 5. NDVI increases in spring and decreases in summer.
- A change is observed in winter 2019; the increase in the NDVI value is less marked than those of the other years (a decrease is even observed for zones 4 and 5). This can be explained by the heavy rainfalls in autumn 2018. This abrupt change is also identified during the analysis of the percentage of vegetation pixels (Figure 11).
- Starting in autumn 2019, the NDVI increases compared to the other years (especially for zone 6), and this can be related to the regular rainfall over the period November 2019 to May 2020.
- The highest interquartile range (IQR) values are observed for dates when the percentage of vegetation pixels per zone is less than 20%.
- Group 1: NDVI (reference index), GREEN_NDVI, ARVI, CIREDEGE, MTCI, NDRE;
- Group 2: SAVI, MSAVI, IRECI, MCARI_NEW;
- Group 3: VII;
- Group 4: PSRI.
- Group 1: NDVI, CIREDEDGE;
- Group 2: SAVI, IRECI;
- Group 3: PSRI;
- Group 4: VII.
3.3. Change Detection Maps on Selected Indices
3.4. Spectral and Temporal Clustering
- PSRI does not allow detecting change related to the senescence of the vegetation of the south of zone 5 in spring and autumn;
- IRECI and CIREDEDGE highlight greater progress in spring vegetation in the center of zone 6 than NDVI;
- The variability of the NDVI values is higher than those of other indices.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Barceló, J.; Poschenrieder, C. Plant water relations as affected by heavy metal stress: A review. J. Plant. Nutr. 1990, 13, 1–37. [Google Scholar] [CrossRef]
- Slonecker, T.; Fisher, G.B.; Aiello, D.P.; Haack, B. Visible and infrared remote imaging of hazardous waste: A review. Remote Sens. 2010, 2, 2474–2508. [Google Scholar] [CrossRef] [Green Version]
- Ong, C.; Carrère, V.; Chabrillat, S.; Clark, R.; Hoefen, T.; Kokaly, R.; Marion, R.; Souza Filho, C.R.; Swayze, G.; Thompson, D.R. Imaging Spectroscopy for the Detection, Assessment and Monitoring of Natural and Anthropogenic Hazards. Surv. Geophys. 2019, 40, 431–470. [Google Scholar] [CrossRef] [Green Version]
- Nie, M.; Lu, M.; Yang, Q.; Zhang, X.-D.; Xiao, M.; Jiang, L.-F.; Yang, J.; Fang, C.-M.; Chen, J.-K.; Li, B. Plants’ use of different nitrogen forms in response to crude oil contamination. Environ. Pollut. 2011, 159, 157–163. [Google Scholar] [CrossRef]
- Barati, S.; Rayegani, B.; Saati, M.; Sharifi, A.; Nasri, M. Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. Egypt. J. Remote Sens. Space Sci. 2011, 14, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantification estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Zinnert, J.C.; Via, S.M.; Young, D.R. Distinguishing natural from anthropogenic stress in plants: Physiology, fluorescence and hyperspectral reflectance. Plant. Soil 2011, 366, 133–141. [Google Scholar] [CrossRef]
- Slonecker, E.T. Analysis of the Effects of Heavy Metals on Vegetation Hyperspectral Reflectance Properties from Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation. In Hyperspectral Remote Sensing of Vegetation, 2nd ed.; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press: London, UK, 2018; Volume IV, pp. 49–66. [Google Scholar]
- Lassalle, G.; Fabre, S.; Credoz, A.; Hédacq, R.; Borderies, P.; Bertoni, G.; Erudel, T.; Buffan-Dubaud, E.; Dubucq, D.; Elger, A. Detection and discrimination of various oil mixtures in soils using vegetation indices: A multi-scale approach. Sci. Total Environ. 2019, 655, 113–1124. [Google Scholar] [CrossRef] [Green Version]
- Lassalle, G.; Fabre, S.; Credoz, A.; Hédacq, R.; Bertoni, G.; Dubucq, D.; Elger, A. Application of PROSPECT for estimating Total Petroleum Hydrocarbons in contaminated soils from leaf optical properties. J. Hazard. Mater. 2019, 377, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, A.; Kopačková, V. Detecting vegetation stress as a soil contamination proxy: A review of optical proximal and remote sensing techniques. Int. J. Environ. Sci. Technol. 2019, 16, 2511–2524. [Google Scholar] [CrossRef]
- Mendez, M.O.; Maier, R.M. Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology. Environ. Health Perspect. 2008, 116, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Davids, C.; Rouyet, L. Remote Sensing for the Mining Industry; Report, Project RESEM; Northern Research Institute: Tromsø, Norway, 2018. [Google Scholar]
- Navarro, M.C.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Vidal, J.; Tovar, P.J.; Bech, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Escarré, J.; Lefèbvre, C.; Raboyeau, S.; Dossantos, A.; Gruber, W.; Marel, J.C.C.; Frérot, H.; Noret, N.; Mahieu, S.; Collin, C.; et al. Heavy Metal Concentration Survey in Soils and Plants of the Les Malines Mining District (Southern France): Implications for Soil Restoration. Water Air Soil Pollut. 2011, 216, 485–504. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Xie, X.; Wang, P.; Hu, Y.; Cheng, H. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A Model of Leaf Optical Properties Spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Slonecker, T.; Haack, B.; Price, S. Spectroscopic analysis of arsenic uptake in in Pteris ferns. Remote Sens. 2008, 1, 644–675. [Google Scholar] [CrossRef] [Green Version]
- Horler, D.; Barber, J.; Barringer, A.; Njoku, E. Effects of heavy metals on the absorbance and reflectance spectra of plants. Int. J. Remote Sens. 1980, 1, 121–136. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Jönsson, P.; Høgda, K.-A.; Karlsen, S.R.; Eklundh, L.; Skidmore, A.K. A ground validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola Peninsula. Int. J. Remote Sens. 2007, 28, 4311–4330. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee national grasslands, Colorado. In Proceedings of the Eighth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 2–6 October 1972; p. 1355. [Google Scholar]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Chen, S.; Zhang, Y.; Zhao, J.; Song, D.; Liu, D. Evaluating Metal Effects on the Reflectance Spectra of Plant Leaves during Different Seasons in Post-Mining Areas, China. Remote Sens. 2018, 10, 1211. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, M.; Liu, X.; Zhou, G. A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice. Sensors 2018, 18, 2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Wang, T.; Skidmore, A.K.; Liu, X. Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images. Sci. Total Environ. 2018, 637–638, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.; Zullo, J., Jr.; Amaral, B.; Coltri, P.; Sousa, E.; Romani, L. Land use temporal analysis through clustering techniques on satellite image time series. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2173–2176. [Google Scholar] [CrossRef] [Green Version]
- Espinoza-Molina, D.; Bahmanyar, R.; Bustamante, J.; Datcu, M.; Diaz-Delgado, R. Land-Cover Change Detection Using Local Feature Descriptors Extracted from Spectral Indices. In Proceedings of the IEEE IGARSS Conference, Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar] [CrossRef]
- Gonçalves, R.; Junior, J.; Amaral, B.; Sousa, E.; Romani, L. Agricultural Monitoring in Regional Scale Using Clustering on Satellite Image Time Series; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Rousseeuw, P. Finding Groups in Data: An. Introduction to Cluster Analysis; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Kamber, M. Data Mining—Concepts and Techniques, 2nd ed.; Morgan Kaufmann Publishers: New York, NY, USA, 2006. [Google Scholar]
- Zhao, Y.; Yuan, Y.; Wang, Q. Fast Spectral Clustering for Unsupervised Hyperspectral Image Classification. Remote Sens. 2019, 11, 399. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xia, G.; Xiong, C.; Zhang, L. Spectral active clustering of remote sensing images. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1737–1740. [Google Scholar] [CrossRef]
- Pascucci, S.; Carfora, M.F.; Palombo, A.; Pignatti, S.; Casa, R.; Pepe, M.; Castaldi, F.A. Comparison between Standard and Functional Clustering Methodologies: Application to Agricultural Fields for Yield Pattern Assessment. Remote Sens. 2018, 10, 585. [Google Scholar] [CrossRef] [Green Version]
- Sheeren, D.; Fauvel, M.; Josipovic, V.; Lopes, M.; Planque, C.; Willm, J.; Dejoux, J.F. Tree Species Classification in Temperate Forests Using Formosat-2 Satellite Image Time Series. Remote Sens. 2016, 8, 734. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, J.; Zhu, W.; Atzberger, C.; Liu, Q. The Optimal Threshold and Vegetation Index Time Series for Retrieving Crop Phenology Based on a Modified Dynamic Threshold Method. Remote Sens. 2019, 11, 2725. [Google Scholar] [CrossRef] [Green Version]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.R.; Reichstein, M. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef] [Green Version]
- Ohana-Levi, N.; Paz-Kagan, T.; Panov, N.; Peeters, A.; Tsoar, A.; Karnieli, A. Time series analysis of vegetation-cover response to environmental factors and residential development in a dryland region. GI Sci. Remote Sens. 2019, 56, 362–387. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Tian, L.; Liu, X.; Zhang, B.; Liu, M.; Wu, L. Extraction of rice heavy metal stress signal features based on long time series leaf area index data using ensemble empirical mode decomposition. Int. J. Environ. Res. Public Health 2017, 14, 1018. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Bolovo, F. A Novel Framework for the Design of Change-Detection Systems for Very-High-Resolution Remote Sensing Images. Proc. IEEE 2012, 101, 609–630. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Bolovo, F.; Bruzzone, L. The Time Variable in Data Fusion: A Change Detection Perspective. Data fusion in Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–26. [Google Scholar] [CrossRef]
- Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Höfle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R.; et al. Multisource and Multitemporal Data Fusion in Remote Sensing. A comprehensive review of the state of the art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef] [Green Version]
- Devi, R.N.; Jiji, G.W. Change detection techniques—A survey. Int. J. Comput. Sci. Appl. 2015, 5, 45–57. [Google Scholar]
- Bhavani, M.; Sangeetha, V.H.; Kalaivani, K.; Ulagapriya, K.; Saritha, A. Change detection algorithm for multi -temporal satellite images: A review. Int. J. Eng. Technol. 2018, 7, 206–209. [Google Scholar] [CrossRef] [Green Version]
- Melchori, A.E.; de Almeida Cândido, P.; Libonati, R.; Morelli, F.; Setzer, A.W.; de Jesus, S.C.; Garcia Fonseca, L.; Körting, T.S. Spectral indices and multi-temporal change image detection algorithms for burned areaextraction in the Brazilian Cerrado. In Proceedings of the Anais XVII Simpósio Brasileiro de Sensoriamento Remoto—SBSR, JoãoPsso, Brasil, 25–29 April 2015. [Google Scholar]
- Lu, D.; Mausel, P.; Brondizios, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [Google Scholar] [CrossRef]
- Polykretis, C.; Grillakis, M.G.; Alexakis, D.D. Exploring the Impact of Various Spectral Indices onLand Cover Change Detection Using Change Vector Analysis: A Case Study of Crete Island, Greece. Remote Sens. 2020, 12, 319. [Google Scholar] [CrossRef] [Green Version]
- Theia Data and Services Center for Continental Surfaces. Available online: https://www.theia-land.fr/pole-theia-2/ (accessed on 20 January 2020).
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2cor: L2A processor for users. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; Volume SP-740. [Google Scholar]
- Martimort, P.; Fernandez, V.; Kirschner, V.; Isola, C.; Meygret, A. Sentinel-2 MultiSpectral imager (MSI) and calibration/validation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar] [CrossRef]
- GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation. 2019. Available online: https://gdal.org (accessed on 20 January 2020).
- Waqar, M.M.; Mirza, J.F.; Mumtaz, R.; Hussain, E. Development of new indices for extraction of built-up area& bare soil from Landsat data. Open Access Sci. Rep. 2012, 1, 2–4. [Google Scholar]
- Valdiviezo-N, J.C.; Téllez-Quiñones, A.; Salazar-Garibay, A.; López-Caloca, A.A. Built-up index methods and their applications for urban extraction from Sentinel 2A satellite data: Discussion. J. Opt. Soc. Am. A 2018, 35, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Faqe Ibrahim, G.R.; Hameed, H.M.; Wheeler, J.; Adamu, B.; Ibrahim, S.; Najmaddin, P.M. Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land 2018, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Filella, I.; Peñuelas, J. The red-edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant. Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Emengini, E.J.; Blackburn, G.A.; Theobald, J.C. Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing. J. Appl. Remote Sens. 2013, 7, 073476. [Google Scholar] [CrossRef]
- Smith, K.L.; Steven, M.D.; Colls, J.J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens. Environ. 2004, 92, 207–217. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Chivkunov, O.B.; Merzlyak, M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot. 2009, 96, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Daughtry, C.; Walthall, C.L.; Kim, M.S.; Brown de Colstoun, E.C.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Wu, C.Y.; Niu, Z.; Tang, Q.; Huang, W.J. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, E.; Colaizzi, D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, W.D. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; Volume SP-351, pp. 309–317. [Google Scholar]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, L.; Zhang, L.; Jiao, Q.; Li, Q. Application of hyperspectral remote sensing for environment monitoring in mining areas. Environ. Earth Sci. 2012, 65, 649–658. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Zhang, L.; You, J. A spectral clustering based method for hyperspectral urban image. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, UAE, 6–8 March 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Al-doski, J.; Mansor, B. NDVI Differencing and Post-classification to Detect Vegetation Changes in Halabja City, Iraq. IOSR JAGG 2013, 1, 1–10. [Google Scholar] [CrossRef]
- Everitt, B.; Skrondal, A. The Cambridge Dictionary of Statistics, 4th ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Vani, V.; Mandla, V.R. Comparative study of NDVI and SAVI vegetation indices in Anantapur district semi-arid areas. Int. J. Civ. Eng. Technol. 2017, 8, 559–566. [Google Scholar]
- Vanino, S.; Nino, P.; De Michele, C.; Bolognesi, S.F.; D’Urso, G.; Di Bene, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Pulighe, G.; et al. Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 2018, 215, 452–470. [Google Scholar] [CrossRef]
- Rathod, P.H.; Rossiter, D.G.; Noomen, M.F.; van der Meer, F.D. Proximal Spectral Sensing to Monitor Phytoremediation of Metal-Contaminated Soils. Int. J. Phytoremediation 2013, 15, 405–426. [Google Scholar] [CrossRef] [PubMed]
- Croft, H.; Chen, J.M. Leaf Pigment. Compr. Remote Sens. 2018, 3, 117–142. [Google Scholar]
- Vrieling, A.; Meroni, M.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Zurita-Milla, R.; Oosterbeek, K.; O’Connore, B.; Paganini, M. Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sens. Environ. 2018, 215, 517–529. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Baudry, J.; Le Roux, V.; Spicher, F.; Lacoux, J.; Roger, D.; Hubert-Moy, L. Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages. ISPRS J. Photogramm. Remote Sens. 2020, 163, 231–256. [Google Scholar] [CrossRef]
- Sridhar, B.B.; Han, F.X.; Diehl, S.V.; Monts, D.L.; Su, Y. Spectral reflectance and leaf internal structure changes of barley plants due to phytoextraction of zinc and cadmium. Int. J. Remote Sens. 2007, 28, 1041–1054. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
Image id Number | Acquisition Date 1 |
---|---|
SENTINEL2A_20160521-105553 | 2016/05/21 |
SENTINEL2A_20160826-104023 | 2016/08/26 |
SENTINEL2A_20161015-104513 | 2016/10/15 |
SENTINEL2A_20170225-105020 | 2017/02/25 |
SENTINEL2A_20170516-105322 | 2017/05/16 |
SENTINEL2A_20170821-104208 | 2017/08/21 |
SENTINEL2A_20171013-105315- | 2017/10/13 |
SENTINEL2A_20180227-104236 | 2018/02/27 |
SENTINEL2A_20180511-105804 | 2018/05/11 |
SENTINEL2A_20180819-105124 | 2018/08/19 |
SENTINEL2A_20181025-104115 | 2018/10/25 |
SENTINEL2A_20190222-104853 | 2019/02/22 |
SENTINEL2A_20190513-104901 | 2019/05/13 |
SENTINEL2A_20190814-105857 | 2019/08/14 |
SENTINEL2A_20191030_104901 | 2019/10/30 |
SENTINEL2A_20200220-105848 | 2020/02/20 |
SENTINEL2A_20200520-105859 | 2020/05/20 |
S2 Spectral Band | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B11 | B12 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Spectral Band Formulation 1 | Ae. | B | G | R | RE1 | RE2 | RE3 | NIR | SWIR | SWIR | |
Spectral Index | Description | ||||||||||
ARVI | Atmospherically Resistant Vegetation Index [62] | x | x | x | |||||||
C_1D | Maximum of first derivate reflectance at the red edge [63]. | x | x | x | x | ||||||
CIREDEDGE | Red-edge Chlorophyll Index [64] | x | x | ||||||||
CTR | Carter index [65] | x | x | ||||||||
EMEN2 | Red and green ratio [66] | x | x | ||||||||
FIRSTDV_CHL | Ratio of the derivative at red-edge [67] | x | x | ||||||||
GREEN_NDVI | Green NDVI [68] | x | x | ||||||||
HMSSI | Heavy Metal Stress Sensitive Index [27] | x | x | x | x | x | |||||
IRECI | Inverted Index Red-Edge Chlorophyll Index [7] | x | x | x | x | ||||||
mARI | Modified Anthocyanin Reflectance Index [69] | x | x | x | |||||||
MCARI | Modified Chlorophyll Absorption Ratio Index [70] | x | x | x | |||||||
MCARI_NEW | New MCARI [71] | x | x | x | |||||||
MCARI_OSAVI | MCARI/Optimized SAVI [72] | x | x | x | x | ||||||
MCARI_OSAVI_NEW | [72] | x | x | x | x | ||||||
MSAVI | Modified Soil Adjusted Vegetation Index [73] | x | x | ||||||||
MTCI | MERIS Terrestrial Chlorophyll Index [74] | x | x | x | |||||||
NBR | Normalized Burn Ratio [75] | x | x | ||||||||
NDRE | Normalized Difference Red Edge [76] | x | x | ||||||||
NDVI | Normalized Difference Vegetation Index [77] | x | x | ||||||||
PSRI | Plant Senescence Reflectance Index [78] | x | x | x | |||||||
S2REP | Sentinel-2 red-edge position [7] | x | x | x | x | ||||||
SAVI | Soil Adjusted Vegetation Index [60] | x | x | ||||||||
SIPI | Structure Insensitive Pigment Index [79] | x | x | x | |||||||
TCARI_OSAVI | [72,79] | x | x | x | x | ||||||
TCARI_OSAVI_NEW | [72] | x | x | x | x | ||||||
VII | Vegetation Inferiority Index [80] | x | x | x | x | x | x | x |
Zone | Increase in Vegetation Cover Pixels (%) | ||
---|---|---|---|
Spring | Autumn | Winter | |
Z1 * | 5 | 30 | 14 |
Z2 * | 1 | 23 | 16 |
Z3 | 1 | 33 | 12 |
Z4 | 0 | 31 | 2 |
Z5 * | 6 | 26 | 13 |
Z6 | 0 | 43 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabre, S.; Gimenez, R.; Elger, A.; Rivière, T. Unsupervised Monitoring Vegetation after the Closure of an Ore Processing Site with Multi-Temporal Optical Remote Sensing. Sensors 2020, 20, 4800. https://doi.org/10.3390/s20174800
Fabre S, Gimenez R, Elger A, Rivière T. Unsupervised Monitoring Vegetation after the Closure of an Ore Processing Site with Multi-Temporal Optical Remote Sensing. Sensors. 2020; 20(17):4800. https://doi.org/10.3390/s20174800
Chicago/Turabian StyleFabre, Sophie, Rollin Gimenez, Arnaud Elger, and Thomas Rivière. 2020. "Unsupervised Monitoring Vegetation after the Closure of an Ore Processing Site with Multi-Temporal Optical Remote Sensing" Sensors 20, no. 17: 4800. https://doi.org/10.3390/s20174800
APA StyleFabre, S., Gimenez, R., Elger, A., & Rivière, T. (2020). Unsupervised Monitoring Vegetation after the Closure of an Ore Processing Site with Multi-Temporal Optical Remote Sensing. Sensors, 20(17), 4800. https://doi.org/10.3390/s20174800