Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis
Abstract
:1. Introduction
2. Transducers
- Field-effect transistors (FETs): FETs are devices controlling drain current by a gate voltage applied. They exhibit gas sensing ability when the metal gate is modified with proper material. The latter needs to electronically communicate with the gate and interact with the gas. The current/voltage variation can return information on the gas composition [30]. Metal oxide semiconductors (MOS) have been introduced in the e-nose technology to modify the FET’s gate. In MOSFETs, the threshold voltage of the sensor is sensitive to the interaction of certain gases on the gate material, usually a catalytic metal, because of the corresponding changes in the work functions of the metal and the oxide layers. The changes in the work functions are induced by the polarization of the surface and interface of the catalytic metal and oxide layers caused by the gas interacting with the catalytically active surface. Moreover, when the metal-insulator interface interacts with the gas, physical changes in the sensor occurs. Therefore, a porous gas-sensitive gate material is used to facilitate diffusion of gas into the material. Gas sensing MOSFETs are produced by standard microfabrication techniques, which incorporate the deposition of gas-sensitive catalytic metals onto the silicon dioxide gate layer [31,32]. Moreover, the FET gate modification with MOS allows the functionalization with biomolecules, allowing them to work at low temperatures [33]. However, another type of material can be used to modify the FET’s gate, graphene. It has been shown that these sensors can have different strengths such as high electrical conductivity, surface-volume ratio, low thermal resistance, and relatively low 1/f noise and the ability to strongly tune the conductivity of the gate. These aspects make these sensors promising for gas detection applications [34]; at the moment no application on peptides, MIPs or DNA sensors have been reported.
- Piezoelectric sensors: piezoelectric crystals can be used in different fields, including optoelectronics, electronics, liquid, and gas detection devices. Two kinds of piezoelectric sensors are used in gas sensing: surface acoustic wave (SAW) and quartz crystal microbalances (QCMs). The working principle is that a change in the mass of the piezoelectric sensor coating, caused by absorption of a volatile, gives a change in the resonant frequency. An input (transmitting) and output (receiving) interdigital transducer deposited on the top of the piezoelectric substrate are present in SAWs. The sensitive element is between the transducers, an acoustic two-dimensional wave propagates since potential is applied to the input transducer; frequencies are in the 100–400 MHz range [35,36]. Quartz crystal microbalances (QCM) are the most used piezoelectric sensors and are of great importance in fields as material science, environmental monitoring, electrochemistry, and biosensors. They are generally realized with an ‘AT cut’ quartz layer having 2 gold electrodes on each side; the crystal is forced to oscillate at the fundamental frequency using an alternating current [37]. When an external electric field is applied to the quartz, the frequency decay is proportional to the mass bound to the crystal [38]. The relationship between frequency change and film deposition efficiency that interacts with different VOCs is expressed by the Sauerbrey equation [39]. These sensors can be easily modified with biological elements using techniques such as drop-casting, spin coating and dip coating. The ease of realization, low costs, ability to work in real-time and the short analysis times make this type of transducers very attractive in the sensors field [40].
- Surface Plasmon Resonance (SPR): SPR is among the most used techniques for characterization and analysis molecular interactions particularly in biosensors; it has recently been used in gas sensing [41,42,43]. SPR is induced by the resonant coupling of photons from polarized light to the oscillation of metal-free electrons; this produces an evanescent electromagnetic wave through to the surface of the metal [44,45]. The binding of a target analyte to a bioreceptor on the sensor surface influences the wave and can be monitored through the variation of the angle of the reflected light onto an appropriate SPR sensor. The sensitivity of the SPR depends on the sensor configuration and particularly on the functionalization of the sensor surface [41]. Recent applications of surface plasmonic waves include surface plasmon-enhanced Raman scattering (SERS) [46,47], localized SPR (LSPR) [48,49,50], surface plasmon field-enhanced fluorescence spectroscopy (SPFS) [51]. The most used configuration for the SPR sensors is the Kretschmann configuration ATR coupling introduced by Kretschmann and Raether after the pioneering work of Otto in 1968 [52]. This configuration is also used as an excitation method in current SPR imaging (SPRi) sensors [53]. SPRi has been largely used for the development of biochips for monitoring biomolecular binding events. Brenet et al., have demonstrated for the first time that SPRi is very efficient for the development of e-noses for sensing VOCs in the gas phase [54]. Using imaging technology, it is possible, in principle, to simultaneously monitor hundreds of biofunctionalized spots in a micro-array format on the surface of the entire biochip [54].
3. Peptides, DNA and MIPs as Sensing Elements
3.1. Peptides
Applications in Real Samples
Peptides | Analyte | Transducer | Immobilization Technique | VOCs Concentration Measured | Application | Ref |
---|---|---|---|---|---|---|
Ps1 | Acetic acid | QCM | Self-assembly monolayer | 10 ppm | - | [58] |
Ps3, Ps4, Ps5, Ps6 | Octanal, acetaldehyde, benzaldehyde, ethanol, acetone, dimethyl sulphide, trimethyl amine, and toluene | QCM | Self-assembly monolayer | Octanal 1435 ppm; benzaldehyde 2198 ppm; trimethyl amine 1594 ppm; acetaldehyde 4007 ppm; acetone 3028 ppm | - | [59] |
Ps2 | Aliphatic aldehydes, formaldehyde, acetaldehyde, propanal, pentanal, hexanal, heptaldehyde, octanal, nonanal, decanal, undecanal. dialdehyde-glyoxal; aromatic aldehydes-benzaldehyde, p-tolualdehyde, panisaldehyde, helional. | QCM | Self-assembly monolayer | >100 ppm | - | [60] |
Ps7, Ps8, Ps9, Ps10 | Acetic acid, butyric acid, ammonia, dimethylamine, benzene, chlorobenzene, and their mixtures | QCM | Spin coating | - | - | [61] |
Ps11, Ps12, Ps13, Ps14, Ps15, Ps16 | cis-3-Hexenol, isopentyl acetate, ethyl acetate, terpinen-4-ol | QCM | Self-assembly monolayer | - | - | [62] |
- | Alcohols, esters, carboxylic acids, ketones, hydrocarbons, aldehydes, and amines | SPRi | Micro spotting robot | 2-methylpyrazine 290 ppm; phenol 34 ppm; isoamyl butyrate 70 ppm; 1-pentanoic acid 51 ppm; 1-pentanol 47 ppm; and 1-octanol 8 ppm | - | [54] |
- | (R) and (S) limonene; (R) and (S) carvone | SPRi | Micro spotting robot | - | [65] | |
Ps17 | Hexanol and pentanol | QCM | Self-assembly monolayer | Hexanol 2–3 ppm; pentanol 3–5 ppm | - | [67] |
- | IPA, acetone, isoprene, toluene | SWCTs-FET | - | 10 ppm | Breath tests | [68] |
Ps18, Ps19, Ps20, Ps21, Ps22, Ps23 | 2-Propanol, ethanol, hex-3-en-1-ol, terpinen-4-ol, nonanal, octanal, ethyl acetate, ethyl butanoate, ethyl octanoate, isopentyl acetate, hexane, acetone, butane-2,3-dione | QCM | Drop casting | - | - | [69,70,72] |
Ps24, Ps25, Ps26 | Benzene, toluene, and xylene | Cantilever array | Self-assembly monolayer | Benzene 0.012 ppm toluene 2 ppm xylene 28 ppm | - | [73] |
- | Dimethylamine, trimethylamine, monomethylamine, and ammonia | QCM | Dip-coated | - | Breath tests | [75] |
- | - | QCM | - | Bacterial infection: Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, and Acinetobacter lwoffii | [76] | |
Ps11, Ps12, Ps13, Ps14, Ps15, Ps16 | cis-3-Hexenol, isopentyl acetate, ethyl acetate, terpinen-4-ol- | QCM | Self-assembly monolayer | - | Olive oil | [62,72] |
Ps15, Ps12, Ps27, Ps28, Ps29, Ps30, Ps27 | 3-Methylbutanal, phenylacetaldehyde, acetic acid tetramethyl-pyrazine, 2-acetyl-pyrrole, 2-nonenal and 2,4-decadienal | QCM | Self-assembly monolayer | - | Dark, milk, and white chocolate | [79] |
Ps15, Ps12, Ps27, Ps28, Ps29, Ps30, Ps27 | - | QCM | Self-assembly monolayer | - | Gummy candies | [79] |
Ps18, Ps19, Ps20, Ps21, Ps22, Ps23 | - | QCM | Drop casting | - | Saffron | [81] |
Ps18, Ps19, Ps20, and Ps22 | - | QCM | Drop casting | - | Fruit juice | [70] |
Ps18, Ps19, Ps20, Ps21, Ps22, Ps23 | - | QCM | Drop casting | - | Carrots | [82] |
Ps18, Ps19, Ps20, Ps21, Ps22, Ps23 | - | QCM | Drop casting | - | Pasta | [83] |
- | Nonane | SPRi | Micro spotting robot | 10–111 ppm | Flavored waters | [84] |
3.2. MIPs
Applications in Real Samples
Molecular Imprinted Polymers | Analyte | Transducer | Immobilization Technique | VOCs Concentration Measured | Application | Ref |
---|---|---|---|---|---|---|
MAA-MIP | Formaldehyde | QCM | Micro-syringe | ≤ 2 ppm | - | [89] |
MAA-MIP | Formaldehyde | QCM | Spin-coating | 1–100 ppm | - | [90] |
PMMA-MIP | Toluene, p-xylene | QCM | Spin-coating | Toluene 540 ppm; p-xylene 170 ppm | - | [91] |
MAA-MIP | α-Pinene, limonene, limonene oxide | QCM | SAM | 10 ppm | - | [94] |
PDMS-MIP | α-Pinene, limonene, eucalyptol, β-pinene, terpinene, estragole | QCM | Spin-coating | 50 ppm | Fresh herb | [95] |
MAA-MIP | α-Pinene, γ-terpinene, limonene | QCM | Spin-coating | - | Harumanis mango | [96] |
MAA-MIP | 3-Carene, Furaneol | QCM | Drop-casting | 5–1000 ppm | Mangifera indica var.: Langda, Amrapaly, Himsagar | [97,100] |
MAA-MIP | α-Pinene, β-phellandrene, 3-carene, cis-thujopsene | QCM | Drop-casting | 25 ppm | Symmorphus bifasciatus and Phloeosinus aubei | [78] |
PAA-MIP | Propenoic acid, hexanoic acid, octanoic acid | QCM | Spin-coating | - | - | [98] |
PAA-MIP | Propenoic acid, hexanoic acid, octanoic acid hexanal, heptanal, nonanal | QCM | Spin-coating | - | - | [99] |
PAA-MIP | Borneol, neral, geraniol, citral | QCM | Drop-casting | - | Zingiber officinale var. amarum; Zingiber officinale var. officinale, Zingiber officinale var. rubrum | [101] |
3.3. DNA
Applications in Real Samples
DNA | Analyte/Samples | Transducer | Immobilization Technique | Concentration of VOCs | Application | Ref |
---|---|---|---|---|---|---|
Ag nanowires DNA-template | Ammonia | Gold interdigitate electrode | - | 200 ppm | - | [103] |
DNA-fish | NO2 | FET | 10–50 ppm | [106] | ||
DNA-SWCNTs | Propanoic acid, hexanoic acid, octanoic acid | FET | - | Propanoic acid 1100 ppm: hexanoic acid 1100 ppm: octanoic acid 790 ppm; limonene 0.3–1500 ppm: 0.05-carvone 250 ppm | - | [107] |
DNA-SWCNT | Dimethyl-sulfone, isovaleric acid α-pinene β-pinene | FET | - | Dimethyl-sulfone and isovaleric acid 0.05–0.4 ppm; pinene 130 ppm | - | [109] |
HpDNA3, HpDNA4, HpDNA6, HpDNA7, HpDNA8, HpDNA9, HpDNA10 | Ethanol, 3-methylbutan-1-ol, 1-pentanol, octanal, nonanal, ethyl acetate, ethyl octanoate, butane-2,3-dione | QCM | Drop casting | - | - | [110] |
HpDNA1, HpDNA2, HpDNA3, HpDNA4, HpDNA5, HpDNA6, HpDNA7, HpDNA8, HpDNA9 | 1-Butanol, 1-pentanol, 1-hexanal, 1-nonanal, trans-2-nonenal and 1-hexanoic acid | SPRi | Micro spotting robot | 1-butanol 55 ppm; 1-pentanol 31 ppm; 1-hexanal 90 ppm; 1-nonanal 4 ppm; trans-2-nonenal 7 ppm | - | [111] |
HpDNA1, HpDNA2, HpDNA3, HpDNA4, HpDNA5, HpDNA6, HpDNA7, HpDNA8, HpDNA9 | Terpenes, alcohol, aldehydes, ketones | QCM | Drop casting | - | Fresh carrots | [112] |
HpDNA1, HpDNA6, HpDNA4, HpDNA8, HpDNA7 | Terpenes | QCM | Drop casting | - | Cannabis sativa L. | [113] |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
List | |
AIBN | 2,2-Azobisisobutyronitrile |
AL | Active learning |
ANN | Artificial neural network |
AuNPs | Gold nanoparticles |
BWG | Zingiber officinale var. officinale |
CA | Clustering analysis |
Cp1 | Monobenzo-15-crown-5 (B15C5) |
Cp2 | Poly [n-butyl methacrylate] (PBMA) |
DA | Discrimination analysis |
DVB | Divinylbenzene |
E-nose | Electronic nose |
EGDMA | Ethylene glycol dimethacrylate |
FETs | Field effect transistor |
GC-MS | Gas chromatography-mass spectrometry |
GSs | Gas sensors |
GS-Ar | Gas sensors array |
HCPC | Hierarchical Clustering on Principal Components |
HpDNA1 | CGGG |
HpDNA2 | GTTG |
HpDNA3 | CCAG |
HpDNA4 | TAAGT |
HpDNA5 | AAGTA |
HpDNA6 | CCCGA |
HpDNA7 | CATGTC |
HpDNA8 | ATAATC |
HpDNA9 | CTGCAA |
HpDNA10 | TTCT |
MAA | Methacrylic acid |
MIP | Molecular imprinted polymer |
MOS | Metal oxide semiconductor |
NIP | Non-imprinted polymer |
NT | Nanotubes |
OBP | Odorant binding protein |
OFET | Organic field-effect transistor |
OR | Olfactory receptors |
PAA | Polyacrylic acid |
PCA | Principal component analysis |
PDMS | Polydimethylsiloxane |
Ps | Peptide sequences |
Ps1 | RVNEWVIC |
Ps2 | KLLFDSLTDLKKKMSEC |
Ps3 | LEKKKKDC-NH2 |
Ps4 | LFDSLTDLKC-NH2 |
Ps5 | LFDSLTDLKKKMSEC-NH2 |
Ps6 | KLLFDSLTDLKKKMSEC-NH2 |
Ps7 | LHYTTIC |
Ps8 | TIMSPKLC |
Ps9 | DLESC |
Ps10 | EPLPGCG |
Ps11 | C |
Ps12 | Glutathione |
Ps13 | g-C |
Ps14 | CG |
Ps15 | TGA |
Ps16 | CGHGGPS |
Ps17 | VFSILSPLPLIIPFVC |
Ps18 | IHRIC |
Ps19 | KSDSC |
Ps20 | LAWHC |
Ps21 | LGFDC |
Ps22 | TGKFC |
Ps23 | WHVSC |
Ps24 | DSWAADIP |
Ps25 | DNPIQAVP |
Ps26 | DRNESSVP |
Ps27 | CIHAP |
Ps28 | CIGPV |
Ps29 | CG |
Ps30 | CAGVP |
P-MIP | α-Pinene-MIP |
RG | Zingiber officinale var. rubrum |
L-MIP | Limonene-MIP |
LO-MIP | Limonene Oxide-MIP |
QCM | Quartz crystal microbalance |
Seq1 | 5′ GAG TCT GTG GAG GAG GTA GTC 3′ |
Seq2 | 5′ AAA ACC GGG GGG GGG GTT TTT 3′ |
Seq3 | 5′ GAG UCU GUG GAG GAG GUA GUC 3′ |
Seq4 | 5′ CGA GGG AGT TGT ACT TGG AGG 3′ |
Seq5 | 5′ TGA TGT GGG TGC CGA AGG TGA 3′ |
Seq6 | 5′ CTT CTG TCT TGA TGT TTG TCA AAC 3′ |
Seq7 | 5′ AAA ACC CCC GGG GTT TTT TTT TTT 3′ |
Seq8 | 5′-AT-CT-GT-TT-3′ |
Seq9 | 5′ CUU CUG UCU UGA UGU UUG UCA AAC 3′ |
Seq10 | 5′ TAC TGT CTC ATT CTG GAT ATT CTG 3′ |
Seq11 | 5′ GAA TAT GTA CTT GTC CCT GTT CTT 3′ |
Seq12 | 5′ GTG TGT GTG TGT GTG TGT GTG TGT 3′ |
Seq13 | 5′ AAA AAA AAA AAA AAA AAA AAA 3′ |
Seq14 | 5′ CCC CCC CCC CCC CCC CCC CCC 3′ |
Seq15 | 5′ GGG GGG GGG GGG GGG GGG GGG 3′ |
Seq16 | 5′ TTT TTT TTT TTT TTT TTT TTT 3′ |
Seq17 | 5′ GAG TCT GTG GAG GAG GTA GTC 3′ |
Seq18 | 5′ CTT CTG TCT TGA TGT TTG TCA AAC 3′ |
Seq19 | 5′ GCG CAT TGG GTA TCT CGC CCG GCT 3′ |
Seq20 | 5′ CCC GTT GGT ATG GGA GTT GAG TGC 3′ |
SPR | Surface plasmon resonance |
SPRi | Surface plasmon resonance imaging |
SWG | Zingiber officinale var. amarum |
SWCTs | Single-walled carbon nanotubes |
VOC | Volatile organic compounds |
ZnONPs | Oxide zinc nanoparticles |
Amino Acid | |
A | Alanine |
R | Arginine |
N | Asparagin |
D | Aspartic acid |
C | Cysteine |
Q | Glutamine |
E | Glutamic acid |
G | Glycine |
H | Histidine |
I | Isoleucine |
L | Leucine |
K | Lysine |
M | Methionine |
F | Phenylalanine |
P | Proline |
S | Serine |
T | Threonine |
W | Tryptophan |
Y | Tyrosine |
V | Valine |
DNA Bases | |
A | Adenine |
C | Cytosine |
G | Guanine |
T | Thymine |
References
- Buck, L.B. Unraveling the sense of smell (Nobel lecture). Angew. Chem. Int. Ed. 2005, 44, 6128–6140. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.E.; Bui, E.T.; Simon, N.M.; Fenniri, H. Artificial nose technology: Status and prospects in diagnostics. Trends Biotechnol. 2017, 35, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, J.; Wu, L.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. An overview of an artificial nose system. Talanta 2018, 184, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Göpel, W. From electronic to bioelectronic olfaction, or: From artificial “moses” to real noses. Sens. Actuators B Chem. 2000, 65, 70–72. [Google Scholar] [CrossRef]
- Abaffy, T. Human olfactory receptors expression and their role in non-olfactory tissues-a mini-review. J. Pharm. Pharm. 2015, 6, 1. [Google Scholar] [CrossRef]
- Verbeurgt, C.; Wilkin, F.; Tarabichi, M.; Gregoire, F.; Dumont, J.E.; Chatelain, P. Profiling of olfactory receptor gene expression in whole human olfactory mucosa. PLoS ONE 2014, 9, e96333. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Antonacci, A.; Lambreva, M.D.; Litescu, S.C.; Rea, G. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors. Biosens. Bioelectron. 2015, 74, 1076–1086. [Google Scholar] [CrossRef]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Advances in olfaction-inspired biomaterials applied to bioelectronic noses. Sens. Actuators B Chem. 2018, 257, 511–537. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef]
- Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210–211. [Google Scholar] [CrossRef]
- Ziyatdinov, A.; Marco, S.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators B Chem. 2010, 146, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Ziyatdinov, A.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Common principal component analysis for drift compensation of gas sensor array data. AIP Conf. Proc 2009, 1137, 566–569. [Google Scholar]
- Laref, R.; Ahmadou, D.; Losson, E.; Siadat, M. Orthogonal signal correction to improve stability regression model in gas sensor systems. J. Sens. 2017, 2017, 9851406. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Li, D.; Chen, J.; Chen, Y.; Yang, T.; Cao, J. Gas-sensor drift counteraction with adaptive active learning for an electronic nose. Sensors 2018, 18, 4028. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.J.; Oliveira, A.R.; Roque, A.C. Protein-and peptide-based biosensors in artificial olfaction. Trends Biotechnol. 2018, 36, 1244–1258. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, P.; Zhu, J.; Knoll, W. From gas sensors to biomimetic artificial noses. Chemosensors 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Huotari, M.; Lantto, V. Measurements of odours based on response analysis of insect olfactory receptor neurons. Sens. Actuators B Chem. 2007, 127, 284–287. [Google Scholar] [CrossRef]
- Du, L.; Wu, C.; Peng, H.; Zhao, L.; Huang, L.; Wang, P. Bioengineered olfactory sensory neuron-based biosensor for specific odorant detection. Biosens. Bioelectron. 2013, 40, 401–406. [Google Scholar] [CrossRef]
- Di Natale, C.; Monti, D.; Paolesse, R. Chemical sensitivity of porphyrin assemblies. Mater. Today 2010, 13, 46–52. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; Goletti, C.; D’Amico, A. Characterization and design of porphyrins-based broad selectivity chemical sensors for electronic nose applications. Sens. Actuators B Chem. 1998, 52, 162–168. [Google Scholar] [CrossRef]
- D’Amico, A.; Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A. Metalloporphyrins as basic material for volatile sensitive sensors. Sens. Actuators B Chem. 2000, 65, 209–215. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; D’Amico, A. Metalloporphyrins based artificial olfactory receptors. Sens. Actuators B Chem. 2007, 121, 238–246. [Google Scholar] [CrossRef]
- Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A. The statistical utilization of multiple measurements. Ann. Eugen. 1938, 8, 376–386. [Google Scholar] [CrossRef]
- Lachenbruch, P.A. Goldstein M. Discriminant analysis. Biometrics 1979, 35, 69–85. [Google Scholar] [CrossRef]
- Smulko, J.M.; Kish, L.B. High-order statistics for fluctuation-enhanced gas sensing. Sens. Mater. 2004, 16, 291–299. [Google Scholar]
- Marco, S.; Gutierrez-Galvez, A. Signal and data processing for machine olfaction and chemical sensing: A review. IEEE Sens. J. 2012, 12, 3189–3214. [Google Scholar] [CrossRef]
- Ali, A.A.S.; Amira, A.; Bensaali, F.; Benammar, M. Hardware PCA for gas identification systems using high level synthesis on the Zynq SoC. In Proceedings of the IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), Abu Dhabi, UAE, 8–11 December 2013; pp. 707–710. [Google Scholar]
- Hawkins, P.C.; Nicholls, A. Conformer generation with OMEGA: Learning from the data set and the analysis of failures. J. Chem. Inf. Model. 2012, 52, 2919–2936. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Fundamentals of semiconductor gas sensors. In Semiconductor Gas Sensors; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–38. [Google Scholar]
- Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 2017, 98, 437–448. [Google Scholar] [CrossRef]
- Malik, M.I.; Shaikh, H.; Mustafa, G.; Bhanger, M.I. Recent Applications of Molecularly Imprinted Polymers in Analytical Chemistry. Sep. Purif. Rev. 2019, 48, 179–219. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, B.; Tang, Q.; Tong, Y.; Liu, Y. One-dimensional nanostructure field-effect sensors for gas detection. Sensors 2014, 14, 13999–14020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumyantsev, S.; Liu, G.; Shur, M.S.; Potyrailo, R.A.; Balandin, A.A. Selective gas sensing with a single pristine graphene transistor. Nano Lett. 2012, 12, 2294–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshak, K.; Moore, E.; Lyons, G.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Länge, K. Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review. Sensors 2019, 19, 5382. [Google Scholar] [CrossRef] [Green Version]
- Pohanka, M. The piezoelectric biosensors: Principles and applications. Int. J. Electrochem. Sci. 2017, 12, 496–506. [Google Scholar] [CrossRef]
- James, D.; Scott, S.M.; Ali, Z.; O’hare, W.T. Chemical sensors for electronic nose systems. Microchim. Acta 2005, 149, 1–17. [Google Scholar] [CrossRef]
- Latif, U.; Can, S.; Hayden, O.; Grillberger, P.; Dickert, F.L. Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors—Detection of bioanalytes. Sens. Actuators B Chem. 2013, 176, 825–830. [Google Scholar] [CrossRef]
- Wasilewski, T.; Szulczyński, B.; Kamysz, W.; Gębicki, J.; Namieśnik, J. Evaluation of three peptide immobilization techniques on a qcm surface related to acetaldehyde responses in the gas phase. Sensors 2018, 18, 3942. [Google Scholar] [CrossRef] [Green Version]
- Hoa, X.D.; Kirk, A.; Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 2007, 23, 151–160. [Google Scholar] [CrossRef]
- Abdulhalim, I.; Zourob, M.; Lakhtakia, A. Surface plasmon resonance for biosensing: A mini-review. Electromagnetics 2008, 28, 214–242. [Google Scholar] [CrossRef]
- Guo, X. Surface plasmon resonance based biosensor technique: A review. J. Biophotonics 2012, 5, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. Lond. 1902, 18, 269. [Google Scholar] [CrossRef]
- Shankaran, D.R.; Gobi, K.V.; Miura, N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators B Chem. 2007, 121, 158–177. [Google Scholar] [CrossRef]
- Maiti, K.K.; Dinish, U.; Samanta, A.; Vendrell, M.; Soh, K.-S.; Park, S.-J.; Olivo, M.; Chang, Y.-T. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 2012, 7, 85–93. [Google Scholar] [CrossRef]
- Goh, D.; Gong, T.; Dinish, U.; Maiti, K.K.; Fu, C.Y.; Yong, K.-T.; Olivo, M. Pluronic triblock copolymer encapsulated gold nanorods as biocompatible localized plasmon resonance-enhanced scattering probes for dark-field imaging of cancer cells. Plasmonics 2012, 7, 595–601. [Google Scholar] [CrossRef]
- Estevez, M.-C.; Otte, M.A.; Sepulveda, B.; Lechuga, L.M. Trends and challenges of refractometric nanoplasmonic biosensors: A review. Anal. Chim. Acta 2014, 806, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Della Pelle, F.; Compagnone, D. Nanomaterial-based sensing and biosensing of phenolic compounds and related antioxidant capacity in food. Sensors 2018, 18, 462. [Google Scholar] [CrossRef] [Green Version]
- Della Pelle, F.; Scroccarello, A.; Scarano, S.; Compagnone, D. Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices. Anal. Chim. Acta 2019, 1051, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Toma, K.; Vala, M.; Adam, P.; Homola, J.; Knoll, W.; Dostálek, J. Compact surface plasmon-enhanced fluorescence biochip. Opt. Express 2013, 21, 10121–10132. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A Hadron. Nucl. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E. Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen. Z. Phys. A Hadron. Nucl. 1971, 241, 313–324. [Google Scholar] [CrossRef]
- Wong, C.L.; Olivo, M. Surface plasmon resonance imaging sensors: A review. Plasmonics 2014, 9, 809–824. [Google Scholar] [CrossRef]
- Brenet, S.; John-Herpin, A.; Gallat, F.o.-X.; Musnier, B.; Buhot, A.; Herrier, C.; Rousselle, T.; Livache, T.; Hou, Y. Highly-selective optoelectronic nose based on surface plasmon resonance imaging for sensing volatile organic compounds. Anal. Chem. 2018, 90, 9879–9887. [Google Scholar] [CrossRef] [PubMed]
- Hurot, C.; Scaramozzino, N.; Buhot, A.; Hou, Y. Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. Sensors 2020, 20, 1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavan, S.; Berti, F. Short peptides as biosensor transducers. Anal. Bioanal. Chem. 2012, 402, 3055–3070. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Boyd, B.J. Peptide-based biosensors. Talanta 2015, 136, 114–127. [Google Scholar] [CrossRef]
- Panigrahi, S.; Sankaran, S.; Mallik, S.; Gaddam, B.; Hanson, A.A. Olfactory receptor-based polypeptide sensor for acetic acid VOC detection. Mater. Sci. Eng. C 2012, 32, 1307–1313. [Google Scholar] [CrossRef]
- Wasilewski, T.; Szulczyński, B.; Wojciechowski, M.; Kamysz, W.; Gębicki, J. A highly selective biosensor based on peptide directly derived from the HarmOBP7 aldehyde binding site. Sensors 2019, 19, 4284. [Google Scholar] [CrossRef] [Green Version]
- Wasilewski, T.; Szulczyński, B.; Wojciechowski, M.; Kamysz, W.; Gębicki, J. Determination of long-chain aldehydes using a novel quartz crystal microbalance sensor based on a biomimetic peptide. Microchem. J. 2020, 154, 104509. [Google Scholar] [CrossRef]
- Lu, H.-H.; Rao, Y.K.; Wu, T.-Z.; Tzeng, Y.-M. Direct characterization and quantification of volatile organic compounds by piezoelectric module chips sensor. Sens. Actuators B Chem. 2009, 137, 741–746. [Google Scholar] [CrossRef]
- Compagnone, D.; Fusella, G.; Del Carlo, M.; Pittia, P.; Martinelli, E.; Tortora, L.; Paolesse, R.; Di Natale, C. Gold nanoparticles-peptide based gas sensor arrays for the detection of foodaromas. Biosens. Bioelectron. 2013, 42, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, X.; Sun, J.; Cai, H.; Li, H.; Chao, Y.; Cui, D. A poly (dimethylsiloxane) based prism for surface plasmon resonance imaging system and its application for gas detection. Rev. Sci. Instrum. 2013, 84, 035001. [Google Scholar] [CrossRef] [PubMed]
- Nanto, H.; Yagi, F.; Hasunuma, H.; Takei, Y.; Koyama, S.; Oyabu, T.; Mihara, T. Multichannel Odor Sensor Utilizing Surface Plasmon Resonance. Sens. Mater. 2009, 21, 201–208. [Google Scholar]
- Maho, P.; Herrier, C.; Livache, T.; Rolland, G.; Comon, P.; Barthelmé, S. Reliable chiral recognition with an electronic nose. Biosens. Bioelectron. 2020, 159, 112183. [Google Scholar] [CrossRef] [Green Version]
- Weerakkody, J.S.; Brenet, S.; Livache, T.; Herrier, C.; Hou, Y.; Buhot, A. Optical Index Prism Sensitivity of Surface Plasmon Resonance Imaging in Gas Phase: Experiment versus Theory. J. Phys. Chem. C 2020, 124, 3756–3767. [Google Scholar] [CrossRef]
- Sankaran, S.; Panigrahi, S.; Mallik, S. Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens. Actuators B Chem. 2011, 155, 8–18. [Google Scholar] [CrossRef]
- Sim, D.; Krabacher, R.; Chávez, J.L.; Martin, J.A.; Islam, A.E.; Kuang, Z.; Maruyama, B.; Naik, R.R.; Kim, S.S. Peptide-functionalized Single-walled Carbon Nanotube Field-effect Transistors for Monitoring Volatile Organic Compounds in Breath. In Proceedings of the IEEE International Flexible Electronics Technology Conference (IFETC), Vancouver, BC, Canada, 11–14 August 2019; pp. 1–2. [Google Scholar]
- Mascini, M.; Pizzoni, D.; Perez, G.; Chiarappa, E.; Di Natale, C.; Pittia, P.; Compagnone, D. Tailoring gas sensor arrays via the design of short peptides sequences as binding elements. Biosens. Bioelectron. 2017, 93, 161–169. [Google Scholar] [CrossRef]
- Mascini, M.; Gaggiotti, S.; Della Pelle, F.; Di Natale, C.; Qakala, S.; Iwuoha, E.; Pittia, P.; Compagnone, D. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs). Front. Chem. 2018, 6, 105. [Google Scholar] [CrossRef] [Green Version]
- Pizzoni, D.; Pittia, P.; Del Carlo, M.; Compagnone, D.; Di Natale, C. Oligopeptides-based gas sensing for food quality control. In Sensors and Microsystems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 83–87. [Google Scholar]
- Pizzoni, D.; Mascini, M.; Lanzone, V.; Del Carlo, M.; Di Natale, C.; Compagnone, D. Selection of peptide ligands for piezoelectric peptide based gas sensors arrays using a virtual screening approach. Biosens. Bioelectron. 2014, 52, 247–254. [Google Scholar] [CrossRef]
- Ju, S.; Lee, K.-Y.; Min, S.-J.; Yoo, Y.K.; Hwang, K.S.; Kim, S.K.; Yi, H. Single-carbon discrimination by selected peptides for individual detection of volatile organic compounds. Sci. Rep. 2015, 5, 9196. [Google Scholar] [CrossRef] [Green Version]
- Di Natale, C.; Paolesse, R.; Martinelli, E.; Capuano, R. Solid-state gas sensors for breath analysis: A review. Anal. Chim. Acta 2014, 824, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-J.; Guo, H.-R.; Chang, Y.-H.; Kao, M.-T.; Wang, H.-H.; Hong, R.-I. Application of the electronic nose for uremia diagnosis. Sens. Actuators B Chem. 2001, 76, 177–180. [Google Scholar] [CrossRef]
- Shih, C.-H.; Lin, Y.-J.; Lee, K.-F.; Chien, P.-Y.; Drake, P. Real-time electronic nose based pathogen detection for respiratory intensive care patients. Sens. Actuators B Chem. 2010, 148, 153–157. [Google Scholar] [CrossRef]
- Frank, R.E.; Massy, W.F.; Morrison, D.G. Bias in multiple discriminant analysis. J. Mark. Res. 1965, 2, 250–258. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, W.; Gu, S.; Wang, J.; Wang, Y. Discrimination of wood borers infested Platycladus orientalis trunks using quartz crystal microbalance gas sensor array. Sens. Actuators B Chem. 2020, 309, 127767. [Google Scholar] [CrossRef]
- Pizzoni, D.; Compagnone, D.; Di Natale, C.; D’Alessandro, N.; Pittia, P. Evaluation of aroma release of gummy candies added with strawberry flavours by gas-chromatography/mass-spectrometry and gas sensors arrays. J. Food Eng. 2015, 167, 77–86. [Google Scholar] [CrossRef]
- Rocchi, R.; Mascini, M.; Faberi, A.; Sergi, M.; Compagnone, D.; Di Martino, V.; Carradori, S.; Pittia, P. Comparison of IRMS, GC-MS and E-Nose data for the discrimination of saffron samples with different origin, process and age. Food Control 2019, 106, 106736. [Google Scholar] [CrossRef]
- Gaggiotti, S.; Della Pelle, F.; Masciulli, V.; Di Natale, C.; Compagnone, D. Monitoring Shelf Life of Carrots with a Peptides Based Electronic Nose. In Proceedings of the Convegno Nazionale Sensori, Catania, Italy, 21–23 February 2018; pp. 69–74. [Google Scholar]
- Gaggiotti, S.; Shkembi, B.; Sacchetti, G.; Compagnone, D. Study on volatile markers of pasta quality using GC-MS and a peptide based gas sensor array. LWT 2019, 114, 108364. [Google Scholar] [CrossRef]
- Slimani, S.; Bultel, E.; Cubizolle, T.; Herrier, C.; Rousselle, T.; Livache, T. Opto-electronic nose coupled to a silicon micro preconcentrator device for selective sensing of flavored waters. Chemosensors 2020, 8, 60. [Google Scholar] [CrossRef]
- Capoferri, D.; Della Pelle, F.; Del Carlo, M.; Compagnone, D. Affinity sensing strategies for the detection of pesticides in food. Foods 2018, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, J.; Liu, Q. Gas sensors based on molecular imprinting technology. Sensors 2017, 17, 1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosheleva, R.I.; Mitropoulos, A.C.; Kyzas, G.Z. New trends in molecular imprinting techniques. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 30, pp. 151–172. [Google Scholar]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Liu, Y.; Zhou, X.; Hu, J. The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. J. Colloid Interface Sci. 2005, 284, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Kotova, K.; Lieberzeit, P.A. Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM. Sensors 2016, 16, 1011. [Google Scholar] [CrossRef] [Green Version]
- Matsuguchi, M.; Uno, T. Molecular imprinting strategy for solvent molecules and its application for QCM-based VOC vapor sensing. Sens. Actuators B Chem. 2006, 113, 94–99. [Google Scholar] [CrossRef]
- Brenneisen, R. Chemistry and analysis of phytocannabinoids and other Cannabis constituents. In Marijuana and the Cannabinoids; Springer: Berlin/Heidelberg, Germany, 2007; pp. 17–49. [Google Scholar]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Kikuchi, M.; Tsuru, N.; Shiratori, S. Recognition of terpenes using molecular imprinted polymer coated quartz crystal microbalance in air phase. Sci. Technol. Adv. Mater. 2006, 7, 156. [Google Scholar] [CrossRef]
- Iqbal, N.; Mustafa, G.; Rehman, A.; Biedermann, A.; Najafi, B.; Lieberzeit, P.A.; Dickert, F.L. QCM-arrays for sensing terpenes in fresh and dried herbs via bio-mimetic MIP layers. Sensors 2010, 10, 6361–6376. [Google Scholar] [CrossRef] [Green Version]
- Hawari, H.; Samsudin, N.; Ahmad, M.; Shakaff, A.; Ghani, S.; Wahab, Y.; Za’aba, S.; Akitsu, T. Array of MIP-based sensor for fruit maturity assessment. Procedia Chem. 2012, 6, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Ghatak, B.; Ali, S.B.; Prasad, A.; Ghosh, A.; Sharma, P.; Tudu, B.; Pramanik, P.; Bandyopadhyay, R. Application of polymethacrylic acid imprinted quartz crystal microbalance sensor for detection of 3-Carene in mango. IEEE Sens. J. 2018, 18, 2697–2704. [Google Scholar] [CrossRef]
- Jha, S.K.; Liu, C.; Hayashi, K. Molecular imprinted polyacrylic acids based QCM sensor array for recognition of organic acids in body odor. Sens. Actuators B Chem. 2014, 204, 74–87. [Google Scholar] [CrossRef]
- Jha, S.K.; Hayashi, K. Polyacrylic acid polymer and aldehydes template molecule based MIPs coated QCM sensors for detection of pattern aldehydes in body odor. Sens. Actuators B Chem. 2015, 206, 471–487. [Google Scholar] [CrossRef]
- Ghatak, B.; Naskar, H.; Ali, S.B.; Tudu, B.; Pramanik, P.; Mukherji, S.; Bandyopadhyay, R. Development of Furaneol Imprinted Polymer Based QCM sensor for Discrimination of Artificially and Naturally Ripened Mango. In Proceedings of the IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan, 26–29 May 2019; pp. 1–3. [Google Scholar]
- Hardoyono, F.; Windhani, K.; Sambodo, H.; Pudjianto, H. Identification of Bioactive Compounds in Ginger Based on Molecularly Imprinted Polymer Quartz Crystal Microbalance Gas Sensor. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Malang, Indonesia, 20–21 March 2019; p. 032012. [Google Scholar]
- Lucarelli, F.; Tombelli, S.; Minunni, M.; Marrazza, G.; Mascini, M. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal. Chim. Acta 2008, 609, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Chang, Q.; Chen, X.; Zhang, B.; Liu, J. Synthesis and application of DNA-templated silver nanowires for ammonia gas sensing. Mater. Sci. Eng. C 2009, 29, 1191–1195. [Google Scholar] [CrossRef]
- Chao, J.; Zhu, D.; Zhang, Y.; Wang, L.; Fan, C. DNA nanotechnology-enabled biosensors. Biosens. Bioelectron. 2016, 76, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Vikrant, K.; Bhardwaj, N.; Bhardwaj, S.K.; Kim, K.-H.; Deep, A. Nanomaterials as efficient platforms for sensing DNA. Biomaterials 2019, 214, 119215. [Google Scholar] [CrossRef]
- Shi, W.; Yu, X.; Zheng, Y.; Yu, J. DNA based chemical sensor for the detection of nitrogen dioxide enabled by organic field-effect transistor. Sens. Actuators B Chem. 2016, 222, 1003–1011. [Google Scholar] [CrossRef]
- Khamis, S.; Jones, R.; Johnson, A.C.; Preti, G.; Kwak, J.; Gelperin, A. DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers. AIP Adv. 2012, 2, 022110. [Google Scholar] [CrossRef]
- White, J.E.; Kauer, J.S. Intelligent Electro-Optical Nucleic Acid-Based Sensor Array and Method for Detecting Volatile Compounds in Ambient Air. U.S. Patent No. 7,062,385, 13 June 2006. [Google Scholar]
- Kybert, N.J.; Lerner, M.B.; Yodh, J.S.; Preti, G.; Johnson, A.C. Differentiation of complex vapor mixtures using versatile DNA–carbon nanotube chemical sensor arrays. ACS Nano 2013, 7, 2800–2807. [Google Scholar] [CrossRef] [Green Version]
- Mascini, M.; Gaggiotti, S.; Della Pelle, F.; Wang, J.; Pingarrón, J.M.; Compagnone, D. Hairpin DNA-AuNPs as molecular binding elements for the detection of volatile organic compounds. Biosens. Bioelectron. 2019, 123, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Gaggiotti, S.; Hurot, C.; Weerakkody, J.S.; Mathey, R.; Buhot, A.; Mascini, M.; Hou, Y.; Compagnone, D. Development of an optoelectronic nose based on surface plasmon resonance imaging with peptide and hairpin DNA for sensing volatile organic compounds. Sens. Actuators B Chem. 2020, 303, 127188. [Google Scholar] [CrossRef]
- Gaggiotti, S.; Mascini, M.; Pittia, P.; Della Pelle, F.; Compagnone, D. Headspace volatile evaluation of carrot samples—Comparison of GC/MS and AuNPs-hpDNA-based e-nose. Foods 2019, 8, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaggiotti, S.; Palmieri, S.; Della Pelle, F.; Sergi, M.; Cichelli, A.; Mascini, M.; Compagnone, D. Piezoelectric peptide-hpDNA based electronic nose for the detection of terpenes; Evaluation of the aroma profile in different Cannabis sativa L.(hemp) samples. Sens. Actuators B 2020, 308, 127697. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaggiotti, S.; Della Pelle, F.; Mascini, M.; Cichelli, A.; Compagnone, D. Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Sensors 2020, 20, 4433. https://doi.org/10.3390/s20164433
Gaggiotti S, Della Pelle F, Mascini M, Cichelli A, Compagnone D. Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Sensors. 2020; 20(16):4433. https://doi.org/10.3390/s20164433
Chicago/Turabian StyleGaggiotti, Sara, Flavio Della Pelle, Marcello Mascini, Angelo Cichelli, and Dario Compagnone. 2020. "Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis" Sensors 20, no. 16: 4433. https://doi.org/10.3390/s20164433
APA StyleGaggiotti, S., Della Pelle, F., Mascini, M., Cichelli, A., & Compagnone, D. (2020). Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Sensors, 20(16), 4433. https://doi.org/10.3390/s20164433