Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Electronic Nose System
2.3. Sampling Protocol
2.4. Signal Conditioning and Pre-Processing
2.5. Data-to-Event Encoding Using AERO
2.6. Akida Neuromorphic Framework and Network Architecture
3. Results and Discussion
3.1. Classifier Training: Learning Using STDP
3.2. Classification Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vanarse, A.; Osseiran, A.; Rassau, A. An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems. Sensors 2017, 17, 2591. [Google Scholar] [CrossRef] [Green Version]
- Moncrieff, R.W. An instrument for measuring and classifying odors. J. Appl. Physiol. 1961, 16, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef]
- Vanarse, A.; Osseiran, A.; Rassau, A. A review of current neuromorphic approaches for vision, auditory, and olfactory sensors. Front. Neurosci. 2016, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Chicca, E.; Schmuker, M.; Nawrot, M. Neuromorphic Sensors, Olfaction. In Encyclopedia of Computational Neuroscience; Jaeger, D., Jung, R., Eds.; Springer: New York, NY, USA, 2014; pp. 1–7. ISBN 978-1-4614-7320-6. [Google Scholar]
- Tayarani, M.; Schmuker, M. Address-Event Signal Processing: Silicon Retina, Cochlea and Olfaction A Review. Front. Neural. Circuits 2021. [Google Scholar] [CrossRef]
- Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, J.; Horrillo, M.C. Advances in artificial olfaction: Sensors and applications. Talanta 2014, 124, 95–105. [Google Scholar] [CrossRef]
- Ordukaya, E.; Karlik, B. Quality control of olive oils using machine learning and electronic nose. J. Food Qual. 2017, 2017, 9272404. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Siadat, M.; Ahmadi, H.; Razavi, S.H. From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Eng. Agric. Environ. Food 2015, 8, 44–51. [Google Scholar] [CrossRef]
- Marco, S.; Gutierrez-Galvez, A. Signal and Data Processing for Machine Olfaction and Chemical Sensing: A Review. IEEE Sens. J. 2012, 12, 3189–3214. [Google Scholar] [CrossRef]
- Vanarse, A.; Osseiran, A.; Rassau, A.; van der Made, P. A Hardware-Deployable Neuromorphic Solution for Encoding and Classification of Electronic Nose Data. Sensors 2019, 19, 4831. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Schmuker, M.; Berna, A.Z.; Trowell, S.; Nowotny, T. Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system. Bioinspir. Biomim. 2016, 11, 026002. [Google Scholar] [CrossRef] [Green Version]
- Imam, N.; Cleland, T.A. Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat. Mach. Intell. 2020, 2, 181–191. [Google Scholar] [CrossRef]
- Koickal, T.J.; Hamilton, A.; Tan, S.L.; Covington, J.A.; Gardner, J.W.; Pearce, T.C. Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans. Circuits Syst. Regul. Pap. 2007, 54, 60–73. [Google Scholar] [CrossRef]
- Ng, K.T.; Boussaid, F.; Bermak, A. A CMOS single-chip gas recognition circuit for metal oxide gas sensor arrays. IEEE Trans. Circuits Syst. Regul. Pap. 2011, 58, 1569–1580. [Google Scholar] [CrossRef]
- Al Yamani, J.; Boussaid, F.; Bermak, A.; Martinez, D. Glomerular Latency Coding in Artificial Olfaction. Front. Neuroeng. 2012, 4, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmuker, M.; Pfeil, T.; Nawrot, M.P. Classification of multivariate data with a spiking neural network on neuromorphic hardware. BMC Neurosci. 2013, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Schmuker, M.; Nowotny, T. An unsupervised neuromorphic clustering algorithm. Biol. Cybern. 2019, 113, 423–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyeler, M.; Stefanini, F.; Proske, H.; Galizia, G.; Chicca, E. Exploring olfactory sensory networks: Simulations and hardware emulation. In Proceedings of the 2010 Biomedical Circuits and Systems Conference (BioCAS), Paphos, Cyprus, 3–5 November 2010; pp. 270–273. [Google Scholar]
- Hsieh, H.-Y.; Tang, K.-T. VLSI implementation of a bio-inspired olfactory spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1065–1073. [Google Scholar] [CrossRef]
- Hu, X.; Khanzada, S.; Klütsch, D.; Calegari, F.; Amin, H. Implementation of biohybrid olfactory bulb on a high-density CMOS-chip to reveal large-scale spatiotemporal circuit information. Biosens. Bioelectron. 2022, 198, 113834. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xue, Y.; Chen, Y.; Wan, H.; Wang, P. A Gas Classification Algorithm of Electronic Noses Based on Convolutional Spiking Neural Network. ECS Meet. Abstr. 2021, MA2021-01, 1317. [Google Scholar] [CrossRef]
- Vanarse, A.; Espinosa-Ramos, J.I.; Osseiran, A.; Rassau, A.; Kasabov, N. Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification. Sensors 2020, 20, 2756. [Google Scholar] [CrossRef] [PubMed]
- Imam, N.; Cleland, T.A.; Manohar, R.; Merolla, P.A.; Arthur, J.V.; Akopyan, F.; Modha, D.S. Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core. Front. Neurosci. 2012, 6, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Yamani, J.H.J.; Boussaid, F.; Bermak, A.; Martinez, D. Bio-inspired gas recognition based on the organization of the olfactory pathway. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, 20–23 May 2012; pp. 1391–1394. [Google Scholar]
- Raman, B.; Hertz, J.L.; Benkstein, K.D.; Semancik, S. Bioinspired methodology for artificial olfaction. Anal. Chem. 2008, 80, 8364–8371. [Google Scholar] [CrossRef] [Green Version]
- Pearce, T.C.; Fulvi-Mari, C.; Covington, J.A.; Tan, F.S.; Gardner, J.W.; Koickal, T.J.; Hamilton, A. Silicon-based neuromorphic implementation of the olfactory pathway. In Proceedings of the Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, VA, USA, 16–19 March 2005; pp. 307–312. [Google Scholar]
- Rochel, O.; Martinez, D.; Hugues, E.; Sarry, F. Stereo-olfaction with a sniffing neuromorphic robot using spiking neurons. In Proceedings of the 16th European Conference on Solid-State Transducers-EUROSENSORS, Prague, Czech Republic, 15–18 September 2002; p. 4. [Google Scholar]
- Moraud, E.M.; Chicca, E. Toward neuromorphic odor tracking: Perspectives for space exploration. Acta Futur. 2011, 4, 9–19. [Google Scholar]
- Diamond, A.; Nowotny, T.; Schmuker, M. Comparing neuromorphic solutions in action: Implementing a bio-inspired solution to a benchmark classification task on three parallel-computing platforms. Front. Neurosci. 2016, 9, 491. [Google Scholar] [CrossRef]
- Vanarse, A.; Osseiran, A.; Rassau, A. Real-time classification of multivariate olfaction data using spiking neural networks. Sensors 2019, 19, 1841. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi-Varnamkhasti, M.; Mohtasebi, S.; Rodriguez-Mendez, M.; Lozano, J.; Razavi, S.; Ahmadi, H. Potential application of electronic nose technology in brewery. Trends Food Sci. Technol. 2011, 22, 165–174. [Google Scholar] [CrossRef]
- Sanchez, C.; Lozano, J.; PedroSantos, J.; Azabal, A.; Ruiz-Valdepenas, S. Discrimination of Aromas in Beer with Electronic Nose. In Proceedings of the 2018 Spanish Conference on Electron Devices (CDE), Salamanca, Spain, 14–16 November 2018; pp. 1–4. [Google Scholar]
- Khokonova, M.; Karashaeva, A.; Zavalin, A. Quality of brewing malt depending on the storage conditions of barley. Russ. Agric. Sci. 2015, 41, 508–511. [Google Scholar] [CrossRef]
- Parker, D.K. Beer: Production, sensory characteristics and sensory analysis. In Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2012; pp. 133–158. ISBN 978-0-85709-051-5. [Google Scholar]
- Shi, Y.; Gong, F.; Wang, M.; Liu, J.; Wu, Y.; Men, H. A deep feature mining method of electronic nose sensor data for identifying beer olfactory information. J. Food Eng. 2019, 263, 437–445. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Panigrahi, S.; Kottapalli, B.; Wolf-Hall, C. Evaluation of an artificial olfactory system for grain quality discrimination. LWT-Food Sci. Technol. 2007, 40, 1815–1825. [Google Scholar] [CrossRef]
- Börjesson, T.; Eklöv, T.; Jonsson, A.; Sundgren, H.; Schnürer, J. Electronic nose for odor classification of grains. Cereal Chem. 1996, 73, 457–461. [Google Scholar]
- Gancarz, M.; Wawrzyniak, J.; Gawrysiak-Witulska, M.; Wiącek, D.; Nawrocka, A.; Rusinek, R. Electronic nose with polymer-composite sensors for monitoring fungal deterioration of stored rapeseed. Int. Agrophysics 2017, 31, 317. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Lan, Y.; Zhu, J.; Westbrook, J.; Hoffmann, W.; Lacey, R. Rapid identification of rice samples using an electronic nose. J. Bionic Eng. 2009, 6, 290–297. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Pearce, T.C.; Gardner, J.W.; Friel, S.; Bartlett, P.N.; Blair, N. Electronic nose for monitoring the flavour of beers. Analyst 1993, 118, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Coghe, S.; Martens, E.; D’Hollander, H.; Dirinck, P.J.; Delvaux, F.R. Sensory and Instrumental Flavour Analysis of Wort Brewed with Dark Specialty Malts. J. Inst. Brew. 2004, 110, 94–103. [Google Scholar] [CrossRef]
- Zhuang, S.; Shetty, R.; Hansen, M.; Fromberg, A.; Hansen, P.B.; Hobley, T.J. Brewing with 100 % unmalted grains: Barley, wheat, oat and rye. Eur. Food Res. Technol. 2017, 243, 447–454. [Google Scholar] [CrossRef]
- Byeon, Y.S.; Lim, S.-T.; Kim, H.-J.; Kwak, H.S.; Kim, S.S. Quality Characteristics of Wheat Malts with Different Country of Origin and Their Effect on Beer Brewing. J. Food Qual. 2021, 2021, 2146620. [Google Scholar] [CrossRef]
- Suárez, A.F.; Kunz, T.; Rodríguez, N.C.; MacKinlay, J.; Hughes, P.; Methner, F.-J. Impact of colour adjustment on flavour stability of pale lager beers with a range of distinct colouring agents. Food Chem. 2011, 125, 850–859. [Google Scholar] [CrossRef]
- Yahya, H.; Linforth, R.S.T.; Cook, D.J. Flavour generation during commercial barley and malt roasting operations: A time course study. Food Chem. 2014, 145, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Beal, A.D.; Mottram, D.S. Compounds contributing to the characteristic aroma of malted barley. J. Agric. Food Chem. 1994, 42, 2880–2884. [Google Scholar] [CrossRef]
- Sensigent. Cyranose 320 E Nose User’s Manual 11-6001; Sensigent: Pasadena, CA, USA, 2000. [Google Scholar]
- Sarkar, S.T.; Bhondekar, A.P.; Macaš, M.; Kumar, R.; Kaur, R.; Sharma, A.; Gulati, A.; Kumar, A. Towards biological plausibility of electronic noses: A spiking neural network based approach for tea odour classification. Neural. Netw. 2015, 71, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Vanarse, A.; Osseiran, A.; Rassau, A. Neuromorphic engineering—A paradigm shift for future IM technologies. IEEE Instrum. Meas. Mag. 2019, 22, 4–9. [Google Scholar] [CrossRef]
- Petro, B.; Kasabov, N.; Kiss, R.M. Selection and Optimization of Temporal Spike Encoding Methods for Spiking Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Boahen, K.A. Point-to-point connectivity between neuromorphic chips using address events. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 2000, 47, 416–434. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-C.; Delbruck, T. Neuromorphic sensory systems. Curr. Opin. Neurobiol. 2010, 20, 288–295. [Google Scholar] [CrossRef]
- Chan, V.; Liu, S.-C.; van Schaik, A. AER EAR: A Matched Silicon Cochlea Pair with Address Event Representation Interface. IEEE Trans. Circuits Syst. Regul. Pap. 2007, 54, 48–59. [Google Scholar] [CrossRef]
- Posch, C.; Serrano-Gotarredona, T.; Linares-Barranco, B.; Delbruck, T. Retinomorphic event-based vision sensors: Bioinspired cameras with spiking output. Proc. IEEE 2014, 102, 1470–1484. [Google Scholar] [CrossRef] [Green Version]
- See, H.H.; Lim, B.; Li, S.; Yao, H.; Cheng, W.; Soh, H.; Tee, B.C. ST-MNIST—The Spiking Tactile MNIST Neuromorphic Dataset. arXiv 2020, arXiv:200504319. [Google Scholar]
- Ward-Cherrier, B.; Pestell, N.; Lepora, N.F. NeuroTac: A Neuromorphic Optical Tactile Sensor applied to Texture Recognition. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 31 October 2020; pp. 2654–2660. [Google Scholar]
- Li, C.-H.; Delbruck, T.; Liu, S.-C. Real-time speaker identification using the AEREAR2 event-based silicon cochlea. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, 20–23 May 2012; pp. 1159–1162. [Google Scholar]
- Lines, A.; Joshi, P.; Liu, R.; McCoy, S.; Tse, J.; Weng, Y.-H.; Davies, M. Loihi Asynchronous Neuromorphic Research Chip. In Proceedings of the 2018 24th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), Vienna, Austria, 13–16 May 2018; pp. 32–33. [Google Scholar]
- Moradi, S.; Qiao, N.; Stefanini, F.; Indiveri, G. A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 2018, 12, 106–122. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, P.; Bautista, M.A.; Gonzàlez, J.; Escalera, S. Beyond one-hot encoding: Lower dimensional target embedding. Image Vis. Comput. 2018, 75, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Brainchip Holdings Ltd. Akida Neuromorphic System-on-Chip. Available online: https://www.brainchipinc.com/products/akida-neuromorphic-system-on-chip (accessed on 28 August 2019).
- Posey, B. What Is the Akida Event Domain Neural Processor? 2020. Available online: https://brainchipinc.com/wp-content/uploads/2020/03/BrainChip_tech-brief_What-is-Akida_v3-1.pdf (accessed on 28 August 2021).
- Yousefzadeh, A.; Stromatias, E.; Soto, M.; Serrano-Gotarredona, T.; Linares-Barranco, B. On practical issues for stochastic stdp hardware with 1-bit synaptic weights. Front. Neurosci. 2018, 12, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maass, W. On the Computational Power of Winner-Take-All. Neural. Comput. 2000, 12, 2519–2535. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]
- Carter, J.; Rego, J.; Schwartz, D.; Bhandawat, V.; Kim, E. Learning Spiking Neural Network Models of Drosophila Olfaction. In Proceedings of the International Conference on Neuromorphic Systems 2020, New Oak Ridge, TN, USA, 28–30 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–5. [Google Scholar]
- Vouloutsi, V.; Lopez-Serrano, L.L.; Mathews, Z.; Chimeno, A.; Ziyatdinov, A.; Perera, A.; Bermúdez i Badia, S.; Verschure, P. The Synthetic Moth: A Neuromorphic Approach toward Artificial Olfaction in Robots. In Neuromorphic Olfaction; CRC Press: Boca Raton, FL, USA, 2013; pp. 117–152. [Google Scholar]
Malt Type | Flavor Descriptors |
---|---|
Wheat | Clove-like and banana notes with malty sweetness |
Pale | Sweet and slightly biscuity |
Caramel | Sweet, honey-like with slight roasty/toastiness |
Dark chocolate | Rich roasted, coffee, and cocoa |
Pilsner | Mild sweetness with straw/grassy notes |
Honey | Subtle honey and bread flavors |
Roasted | Coffee, intense bitter, and roasty notes |
Rye | Roasty and spicy notes |
Parameter | Time | Pump Speed |
---|---|---|
Baseline correction | 15 s | Medium (120 cc/min) |
Sample draw-in | 50 s | High (180 cc/min) |
Snout removal | 5 s | |
Purge (air intake) | 20 s | High (180 cc/min) |
Substrate heater temperature | 37 °C |
Network Parameters | Parameter Description | Bounds | Optimum Value |
---|---|---|---|
Number of neurons per class | Number of neurons representing each class | 1–30 | 10 |
Number of weights per neuron | Number of active connections for each neuron | 1 to 2880 (max bound is derived from 2 × number of timepoints × quantization levels) | 1795 |
Initial plasticity | Controls weight changes when learning occurs | 0.75–1.00 | 0.84 |
Learning competition | Controls competition between neurons | 0.1–0.75 | 0.48 |
Minimum plasticity | Minimum level to which connectivity among the neurons will decay | 0.1–0.50 | 0.21 |
Plastic decay | Decay of weight connections with each learning step | 0.1–0.50 | 0.27 |
Method | Classification Accuracy | Execution Time |
---|---|---|
Akida SNN (this work) | 97% | 1.85 s |
Linear Discriminant Analysis | 84% | 33 s |
Support Vector Machine | 89% | 22 s |
K-Nearest Neighbor (weighted) | 73% | 14 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanarse, A.; Osseiran, A.; Rassau, A.; van der Made, P. Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts. Sensors 2022, 22, 440. https://doi.org/10.3390/s22020440
Vanarse A, Osseiran A, Rassau A, van der Made P. Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts. Sensors. 2022; 22(2):440. https://doi.org/10.3390/s22020440
Chicago/Turabian StyleVanarse, Anup, Adam Osseiran, Alexander Rassau, and Peter van der Made. 2022. "Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts" Sensors 22, no. 2: 440. https://doi.org/10.3390/s22020440
APA StyleVanarse, A., Osseiran, A., Rassau, A., & van der Made, P. (2022). Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts. Sensors, 22(2), 440. https://doi.org/10.3390/s22020440