Laboratory Evaluation of Railroad Crosslevel Tilt Sensing Using Electrical Time Domain Reflectometry
Abstract
:1. Introduction
2. Electrical Time Domain Reflectometry Background
3. Capacitive Tilt Sensor Design
3.1. Tilt Sensor Design and Operating Principles
3.2. Tilt Sensor Fabrication
4. Experimental Details
4.1. Characterization of Tilt Sensor Performance
4.2. ETDR Multi-Sensor Testing
5. Results and Discussion
5.1. Capacitive Tilt Sensor Characterization Results
5.2. ETDR with a Single Tilt Sensor
5.3. ETDR with Multiple Tilt Sensors
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Overview of America’s Freight Railroad; Association of America Railroads: Washington, DC, USA, 2020.
- Freight Railroad Background; Federal Railroad Administration: Washington, DC, USA, 2012.
- Train Accidents by Type and Major Cause from Form FRA F 6180.54, table 3.16, Accident Summary Tables; U.S. Department of Transportation, Federal Railroad Administration, Office of Safety Analysis: Washington, DC, USA, 2020.
- Johnson, K. Multiple Deaths in Amtrak Train Derailment in Washington. 2017. Available online: https://www.nytimes.com/2017/12/18/us/amtrak-derailment-washington.html (accessed on 10 August 2020).
- Liu, X.; Saat, R.; Barkan, C.P.L. Analysis of Causes of major Train Derailment and Their Effect on Accident Rates. Transp. Res. Rec. J. Transp. Res. Board 2012, 2289, 154–163. [Google Scholar] [CrossRef]
- Szelążek, J. Ultrasonic Measurement of Thermal Stresses in Continuously Welded Rails. NDT E Int. 1992, 25, 77–85. [Google Scholar] [CrossRef]
- Lo, C.C.H.; Paulsen, J.A.; Kinser, E.R.; Jiles, D.C. Quantitative Evaluation of Stress Distribution in Magnetic Materials by Barkhausen Effect and Magnetic Hysteresis Measurements. IEEE 2004, 40, 2173–2175. [Google Scholar] [CrossRef]
- Williams, N.D. Nondestructive Testing of Rail Tunnel Linings. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2014. [Google Scholar]
- Fischer, P.F.; Daik, S.N. Railroad Track Gauge, Level, and Aligning Tool. U.S. Patent 2216436A, 1 October 1940. [Google Scholar]
- Mihailov, S.J. Fiber Bragg Grating Sensors for Harsh Environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, H.L.; Chen, M.H. Structural Health Monitoring Activities of Applying Optical Fiber Sensors in Taiwan. In Proceedings of the Optical Fiber Sensors 2006, Cancun Mexico, 23–27 October 2006. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.-J.; Yun, C.-B.; Inman, D.J. Abuilt-in Active Sensing System-Based Structural Health Monitoring Technique Using Statistical Pattern Recognition. J. Mech. Sci. Technol. 2007, 21, 896–902. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, S.S. Study of Capacitive Tilt Sensor with Metallic Ball. ETRI J. 2014, 36, 361–366. [Google Scholar] [CrossRef]
- Lee, B.M.; Loh, K.J.; Scalea, F.L.D. Distributed Strain Sensing using Electrical Time Domain Reflectometry with Nanocomposites. IEEE 2018, 18, 9515–9525. [Google Scholar] [CrossRef]
- Dominauskas, A.; Heider, D.; Gillespie, J.W. Electric time-domain reflectometry sensor for online flow sensing in liquid composite molding processing. Compos. Part A Appl. Sci. Manuf. 2003, 34, 67–74. [Google Scholar] [CrossRef]
- Wadell, B.C. Transmission Line Design Handbook; Artech House: Norwood, MA, USA, 1991. [Google Scholar]
- Lin, M.W.; Thaduri, J.; Abatan, A.O. Development of an electrical time domain reflectometry (ETDR) distributed strain sensor. Meas. Sci. Technol. 2005, 16, 1495–1505. [Google Scholar] [CrossRef]
- Sheng, B.; Zhou, C.; Hepburn, D.M.; Dong, X. Partial Discharge Pulse Propagation in Power Cable and Partial Discharge Monitoring System. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 948–956. [Google Scholar] [CrossRef] [Green Version]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Liu, W.; Hunsperger, R.G.; Chajes, M.J.; Folliard, K.J.; Kunz, E. Corrosion Detection of Steel Cables Using Time Domain Reflectometry. J. Mech. Civ. Eng. 2002, 14, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Todoroki, A.; Ohara, K.; Mizutani, Y.; Suzuki, Y.; Matsuzaki, R. Time-Domain Reflectometry for Detection of the Bearing Failure of a CFRP Laminate Fastener Hole: Effect of Peeling of the Insulator. Adv. Compos. Mater. 2016, 25, 457–469. [Google Scholar] [CrossRef]
- Stastny, J.A.; Rogers, C.A.; Liang, C. Distributed electrical time domain reflectometry (ETDR) structural sensors: Design models and proof-of-concept experiments. Smart Sens. Process. Instrum. 1993, 1918, 366–376. [Google Scholar]
- Roth, K.; Schulin, R.; Fluhler, H.; Attinger, W. Calibration of Time Domain Reflectometry for Water Content Measurement Using a Composite Dielectric Approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Malicki, M.A.; Piagge, R.; Renger, M.; Waiczak, R.T. Application of time-domain reflectometry (TDR) soil moisture miniprobe for the determination of unsaturated soil water characteristics from undisturbed soil cores. Irrig. Sci. 1992, 13, 65–72. [Google Scholar] [CrossRef]
- Whalley, W.R. Considerations on the use of time-domain reflectometry (TDR) for measuring soil water content. J. Soil Sci. 1993, 44, 1–9. [Google Scholar] [CrossRef]
- Miau-Bin, S. Fracture Monitoring within Concrete Structure by Time Domain Reflectometry. Eng. Fract. Mech. 1990, 35, 313–320. [Google Scholar] [CrossRef]
- Lin, M.W.; Abatan, A.O.; Zhang, W.-M. Crack damage detection of structures using distributed electrical-time-domain reflectometry sensors. Smart Struct. Mater. 1998, 3325, 173–180. [Google Scholar]
- Yankielun, N.E.; Zabilansky, L. Laboratory Investigation of Time-Domain Reflectometry System for Monitoring Bridge Scour. J. Hydraul. Eng. 1999, 125, 1279–1284. [Google Scholar] [CrossRef]
- Bishop, J.A.; Member, S.; Pommerenke, D.J.; Chen, G. A Rapid-Acquisition Electrical Time-Domain Reflectometer for Dynamic Structure Analysis. IEEE 2011, 60, 655–661. [Google Scholar] [CrossRef]
- Hernandez-Mejia, J.C. Chapter 5. Time Domain Reflectometry (TDR). In Cable Diagnostic Focused Initiative (CDFI); Georgia Tech Research Corporation: Atlanta, GA, USA, 2016. [Google Scholar]
- Part 213-Track Safety Standards. Code Fed. Regul. 2019, 105–106.
- Magnusson, P.C.; Weisshaar, A.; Tripathi, V.K.; Alexander, G.C. Transmission Lines and Wave Propagation, 4th ed.; CRC Press LLC.: Boca Raton, FL, USA, 2000. [Google Scholar]
- Ballou, G. Handbook for Sound Engineers, 3rd ed.; Focal Press: Oxford, UK, 2002. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Chen, C.-L.; Loh, K.J. Laboratory Evaluation of Railroad Crosslevel Tilt Sensing Using Electrical Time Domain Reflectometry. Sensors 2020, 20, 4470. https://doi.org/10.3390/s20164470
Li S, Chen C-L, Loh KJ. Laboratory Evaluation of Railroad Crosslevel Tilt Sensing Using Electrical Time Domain Reflectometry. Sensors. 2020; 20(16):4470. https://doi.org/10.3390/s20164470
Chicago/Turabian StyleLi, Sijia, Chi-Lin Chen, and Kenneth J. Loh. 2020. "Laboratory Evaluation of Railroad Crosslevel Tilt Sensing Using Electrical Time Domain Reflectometry" Sensors 20, no. 16: 4470. https://doi.org/10.3390/s20164470
APA StyleLi, S., Chen, C. -L., & Loh, K. J. (2020). Laboratory Evaluation of Railroad Crosslevel Tilt Sensing Using Electrical Time Domain Reflectometry. Sensors, 20(16), 4470. https://doi.org/10.3390/s20164470