Demodulation Method for Loran-C at Low SNR Based on Envelope Correlation–Phase Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Principle of PPM
2.2. Envelope Model of Loran-C Pulse
2.3. PPM Demodulation Method
2.3.1. Description of the PPM Demodulation Method
- 1)
- if , the judgment is no time shift.
- 2)
- if , the judgment is 1 μs delay.
- 3)
- if , the judgment is 1 μs advance.
2.3.2. Mathematical Model of the EC
2.3.3. SNR Gain
2.3.4. Selection of EC Schemes
3. Results
3.1. Validation Method
3.2. Anti-Noise Performance
3.3. Anti-SWI Performance
3.4. Experimental Verification
- (1).
- In RF signal processing, the input Loran-C signal is sampled by analogue-to-digital and filtered by an adaptive notch and finite impulse response band-pass, thus obtaining the digital signal.
- (2).
- The complex envelope of the Loran-C pulse is obtained through orthogonal down conversion.
- (3).
- (4).
- The EC–PD and EPD–MD methods are alternately selected for signal demodulation every half an hour.
- (5).
- The experimental data are composed of message frames, as shown in Figure 11. The serial port outputs one message frame to the PC every second, including $test ID, method ID (“0” references the EPD–MD method, and “1” refers to the EC–PD method), experimental period, number of correct message frames in each experimental period, message type, message subtype, station ID, time code 1 (yyyy:mm:dd), time code 2 (hh:mm:ss), precise time information (ms:μs:10ns), broadcasting deviation, and leap second. The correctness of the message frame is examined by Reed-Solomon (RS) decoding and cyclic redundancy check (CRC).
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Y.X. Concepts of Comprehensive PNT and Related Key Technologies. Acta Geod. Cartogr. Sin. 2016, 45, 505–510. [Google Scholar]
- Yang, S.H.; Lee, C.B.; Lee, Y.K.; Lee, J.K. Accuracy Improvement Technique for Timing Application of LORAN-C Signal. IEEE Trans. Instrum. Meas. 2011, 60, 2648–2654. [Google Scholar] [CrossRef]
- Lo, S.C.; Peterson, B.B.; Enge, P.K.; Swaszek, P. Loran Data Modulation: Extensions and Examples. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 628–644. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, S.F.; Sun, X.W. The Additional Secondary Phase Correction System for AIS Signals. Sensors 2017, 17, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, D.; Boneh, D.; Lo, S.C.; Enge, P.K. Reliable Location-Based Services from Radio Navigation Systems. Sensors 2010, 10, 11369–11385. [Google Scholar] [CrossRef]
- Griffioen, J.W.; Oonincx, P.J. Suitability of Low-Frequency Navigation Systems for Artillery Positioning in a GNSS Denied Environment. J. Navig. 2013, 66, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Li, X.H.; Liu, C.H.; Li, S.F. Research on the integrated positioning techniques of ground-based LF time service system and GNSS. J. Time Freq. 2017, 40, 161–177. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Oh, S.H.; So, H.; Hwang, D.H. Multi-Radio Integrated Navigation System M&S Software Design for GNSS Backup under Navigation Warfare. Electronics 2019, 8, 188. [Google Scholar] [CrossRef] [Green Version]
- Son, P.W.; Park, S.H.; Seo, K.; Han, Y.; Seo, J. Development of the Korean eLoran testbed and analysis of its expected positioning accuracy. In Proceedings of the 19th IALA Conference, Incheon, Korea, 27 May–2 June 2018. [Google Scholar]
- Lo, S.C.; Peterson, B.B.; Hardy, T.; Enge, P.K. Improving Loran coverage with low power transmitters. J. Navig. 2010, 63, 23–38. [Google Scholar] [CrossRef] [Green Version]
- EU eLoran Efforts Sharpen While U.S. Requirements Study Continues. Available online: https://insidegnss.com/eu-eloran-efforts-sharpen-while-u-s-requirements-study-continues/ (accessed on 20 April 2019).
- Offermans, G.; Bartlett, S.; Schue, C. Providing a Resilient Timing and UTC Service Using eLoran in the United States: Resilient timing using eLoran. Navigation 2017, 64, 339–349. [Google Scholar] [CrossRef]
- Willigen, D.V.; Offermans, G.W.A.; Helwig, A.W.S. EUROFIX: Definition and current status. In Proceedings of the IEEE Position Location & Navigation Symposium, Palm Springs, CA, USA, 20–23 April 1996; pp. 101–108. [Google Scholar] [CrossRef]
- Li, S.F.; Wang, Y.L.; Hua, Y.; Xu, Y.L. Research of Loran-C data demodulation and decoding technology. Chin. J. Sci. Instrum. 2012, 33, 1407–1413. [Google Scholar] [CrossRef]
- Li, Y.; Hua, Y.; Yan, B.R.; Guo, W. Analysis on Time Variation Analysis of BPL Long Wave Time Service Signal Transmission Delay. J. Astronaut. Metrol. Meas. 2019, 39, 12–16. [Google Scholar] [CrossRef]
- Li, S.F.; Wang, Y.L.; Hua, Y.; Yuan, J.B. Loran-C Signal Fast Acquisition Method and Its performance Analysis. J. Electron. Inf. Technol. 2013, 35, 2175–2179. [Google Scholar] [CrossRef]
- Yan, W.H.; Zhao, K.J.; Li, S.F.; Wang, X.H.; Hua, Y. Precise Loran-C Signal Acquisition Based on Envelope Delay Correlation Method. Sensors 2020, 20, 2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.Y.; Hua, Y.; Li, S.F.; Yang, C.Z. Acquisition method of Loran-C signal based on matched filter. In Proceedings of the 2015 IEEE International Conference on Signal Processing, Communications and Computing, Ningbo, China, 19–22 September 2015; pp. 541–545. [Google Scholar] [CrossRef]
- Zhang, K.; Wan, G.B.; Li, M.C.; Xi, X.L. Skywave delay estimation in Enhanced Loran based on extended invariance principle weighted Fourier transform and relaxation algorithm. IET Radar Sonar Navig. 2019, 13, 1344–1349. [Google Scholar] [CrossRef]
- Wu, H.R.; Liu, R.Z. A new Algorithm for Sky-Wave and Ground-Wave Detection of Loran C Based on FFT/IFFT Technology. J. Nav. Aeronaut. Astronaut. Univ. 2009, 24, 317–320. [Google Scholar] [CrossRef]
- Zhang, K.; Wan, G.B.; Xi, X.L. Enhanced Loran skywave delay estimation based on artificial neural network in low SNR environment. IET Radar Sonar Navig. 2019, 14, 127–132. [Google Scholar] [CrossRef]
- Zhang, K.; Wan, G.B.; Pu, Y.; Zheng, C.; Xi, X.L. Loran-C skywave delay estimation using hybrid-WRELAX algorithm. Electron. Lett. 2017, 53, 1426–1427. [Google Scholar] [CrossRef]
- Wu, M.; Li, F.N.; Su, X.Q.; Wang, G.C. The New Method of Loran C Cycle Identification Based on Gaussian Smoothing Filter. Hydrogr. Surv. Charting 2013, 33, 80–82. [Google Scholar] [CrossRef]
- Yan, W.H.; Hua, Y.; Yuan, Y.B.; Zhao, K.J.; Li, S.F. A joint detection method of cycle-identification for loran-C signal. In Proceedings of the 2017 IEEE International Conference on Electronic Measurement & Instruments, Hangzhou, China, 20–22 October 2017; pp. 497–502. [Google Scholar] [CrossRef]
- Tehrani, A.K.Z.; Pourmohammad, A. Acurate and Robust Loran-C Cycle Identification. In Proceedings of the 2017 IEEE International Conference on Application of Information and Communication Technologies, Moscow, Russia, 20–22 September 2017. [Google Scholar] [CrossRef]
- Li, Y.; Hua, Y.; Yan, B.R.; Guo, W. Experimental Study on a Modified Method for Propagation Delay of Long Wave Signal. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1716–1720. [Google Scholar] [CrossRef]
- Wang, D.D.; Xi, X.L.; Pu, Y.R.; Liu, J.F.; Zhou, L.L. Parabolic Equation Method for Loran-C ASF Prediction Over Irregular Terrain. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 734–737. [Google Scholar] [CrossRef]
- Son, P.W.; Rhee, J.H.; Hwang, J.; Seo, J. Universal Kriging for Loran ASF Map Generation. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1828–1842. [Google Scholar] [CrossRef]
- Lo, S.C.; Peterson, B.B.; Enge, P.K. Loran Data Modulation: A Primer[AESS Tutorial IV]. IEEE Aerosp. Electron. Syst. Mag. 2007, 22, 31–51. [Google Scholar] [CrossRef]
- Lo, S.C.; Enge, P.K. Data transmission using LORAN-C. In Proceedings of the International Loran Association 29th Annual Meeting, Washington, DC, USA, 13–15 November 2000; Available online: http://web.stanford.edu/group/scpnt/gpslab/pubs/papers/Lo_ILA_2000.pdf (accessed on 20 April 2019).
- U.S Coast Guard and the U.S Coast Guard Auxiliary. Loran-C User Handbook. Available online: https://www.loran.org/otherarchives/-1992%20-Loran-C%20User%20Handbook%20-%20USCG.pdf (accessed on 20 April 2019).
- Zha, X.; Ni, S.H.; Zhang, P. Effective Iteration Method of a Class of Nonlinear Signal Denoising Based on Singular Value Decomposition. J. Electron. Inf. Technol. 2015, 37, 1330–1335. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, C.; Zhang, Y.; Liu, H. An Efficient SVD-Based Method for Image Denoising. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 868–8806. [Google Scholar] [CrossRef]
- Lilly, J.M.; Olhede, S.C. On the Analytic Wavelet Transform. IEEE Trans. Inf. Theory 2010, 56, 4135–4156. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, M.; Anderson, C.L.; Freed, J.H. A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds. IEEE Access 2016, 4, 3862–3877. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Yan, W.; Li, S.; Hua, Y. Demodulation Method for Loran-C at Low SNR Based on Envelope Correlation–Phase Detection. Sensors 2020, 20, 4535. https://doi.org/10.3390/s20164535
Yuan J, Yan W, Li S, Hua Y. Demodulation Method for Loran-C at Low SNR Based on Envelope Correlation–Phase Detection. Sensors. 2020; 20(16):4535. https://doi.org/10.3390/s20164535
Chicago/Turabian StyleYuan, Jiangbin, Wenhe Yan, Shifeng Li, and Yu Hua. 2020. "Demodulation Method for Loran-C at Low SNR Based on Envelope Correlation–Phase Detection" Sensors 20, no. 16: 4535. https://doi.org/10.3390/s20164535
APA StyleYuan, J., Yan, W., Li, S., & Hua, Y. (2020). Demodulation Method for Loran-C at Low SNR Based on Envelope Correlation–Phase Detection. Sensors, 20(16), 4535. https://doi.org/10.3390/s20164535