Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus and Procedures
2.2.1. Synthesis and Characterization of CDs
2.2.2. Modification of Electrodes
2.2.3. Electrochemical Measurements
2.2.4. Electrochemical Determination of Norepinephrine
2.2.5. Influence of Interfering Substances
3. Results and Discussion
3.1. Characterization of CDs
3.2. Cyclic Voltammetric Behavior of NE
3.3. Calibration and Limit of Detection of NE
3.4. Selectivity
3.5. Real Application
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cammann, K. Bio-sensors based on ion-selective electrodes. Fresenius’ Z. Anal. Chem. 1977, 287, 1–9. [Google Scholar] [CrossRef]
- Scott, K. Electrochemical principles and characterization of bioelectrochemical systems. Micro. Electrochem. Fuel Cells 2016, 88, 29–66. [Google Scholar]
- Schröder, U.; Nießen, J.; Scholz, F. A Generation of Microbial Fuel Cells with Current Outputs Boosted by More Than One Order of Magnitude. Angew. Chem. Int. Ed. 2003, 42, 2880–2883. [Google Scholar] [CrossRef] [PubMed]
- Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 2003, 42, 33–84. [Google Scholar] [CrossRef]
- Berridge, C.W.; Schmeichel, B.E.; España, R.A. Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev. 2012, 16, 187–197. [Google Scholar] [CrossRef] [Green Version]
- McBurney-Lin, J.; Lu, J.; Zuo, Y.; Yang, H. Locus Coeruleus-Norepinephrine Modulation of Sensory Processing and Perception: A Focused Review. Neurosci. Biobehav. Rev. 2019, 105, 190–199. [Google Scholar] [CrossRef]
- O’Donnell, J.; Zeppenfeld, D.; McConnell, E.; Pena, S.; Nedergaard, M. Norepinephrine: A Neuromodulator That Boosts the Function of Multiple Cell Types to Optimize CNS Performance. Neurochem. Res. 2012, 37, 2496–2512. [Google Scholar] [CrossRef] [Green Version]
- Brondani, D.; Weber, S.C.; Dupont, J.; Cruz, V.I. Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline. Sens. Actuators B 2009, 140, 252–259. [Google Scholar] [CrossRef]
- Florescu, M.; David, M. Tyrosinase-Based Biosensors for Selective Dopamine Detection. Sensors 2017, 17, 1314. [Google Scholar] [CrossRef] [Green Version]
- Arslan, F.; Durmus, S.; Colak, O.; Arslan, H. A New Laccase-Based Biosensor for Epinephrine Determination. Gazi Univ. J. Sci. 2015, 28, 1–9. [Google Scholar]
- Baluta, S.; Zając, D.; Szyszka, A.; Malecha, K.; Cabaj, J. Enzymatic Platforms for Sensitive Neurotransmitter Detection. Sensors 2020, 20, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apetrei, I.M.; Apetrei, C. Amperometric Tyrosinase based Biosensors for Serotonin Detection. Rom. Biotechnol. Lett. 2013, 18, 8253–8262. [Google Scholar]
- Solomon, E.I.; Sundaram, U.M.; Machonkin, T.E. Multicopper Oxidases and Oxygenases. Chem. Rev. 1996, 96, 2563–2605. [Google Scholar] [CrossRef] [PubMed]
- Jackowska, K.; Krysiński, P. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 2013, 405, 3753–3771. [Google Scholar] [CrossRef] [Green Version]
- Ji, D.; Shi, Z.; Liu, Z.; Low, S.S.; Zhu, J.; Zhang, T.; Chen, Z.; Yu, X.; Lu, Y.; Lu, D.; et al. Smartphone-based square wave voltammetry system with screen-printed graphene electrodes for norepinephrine detection. Smart Mater. Med. 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Bonet-San-Emeterio, M.; Algarra, M.; Petković, M.; del Valle, M. Modification of electrodes with N-and S-doped carbon dots. Evaluation of the electrochemical response. Talanta 2020, 212, 1–8. [Google Scholar] [CrossRef]
- Ding, X.; Niu, Y.; Zhang, G.; Xu, Y.; Li, J. Electrochemistry in Carbon-based Quantum Dots. Chem. Asian J. 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Hiremath, S.D.; Priyadarshi, B.; Banerjee, M.; Chatterjee, A. Carbon dots-MnO2 based turn-on fluorescent probe for rapid and sensitive detection of hydrazine in water. J. Photochem. Photobiol. A 2020, 389, 1–8. [Google Scholar] [CrossRef]
- Zhou, X.; Qu, Q.; Wang, L.; Li, L.; Li, S.; Xia, K. Nitrogen dozen carbon quantum dots as one dual function sensing platform for electrochemical and fluorescent detecting ascorbic acid. J. Nanopart. Res. 2020, 22, 1–13. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Rawat, K.; Bohidar, H.B. Multimode sensing of riboflavin via Ag@ carbon dot conjugates. Appl. Nanosci. 2020, 10, 281–291. [Google Scholar] [CrossRef]
- Yu, H.W.; Jiang, J.H.; Zhang, Z.; Wan, G.C.; Liu, Z.Y.; Chang, D.; Pan, H.Z. Preparation of quantum dots CdTe decorated graphene composite for sensitive detection of uric acid and dopamine. Anal. Biochem. 2017, 519, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Retna, R.C.; Okajima, T.; Ohsaka, T. Gold nanoparticle arrays for the voltammetric sensing of dopamine. J. Electroanal. Chem. 2003, 543, 127–133. [Google Scholar]
- Yang, Z.; Hu, G.; Chen, X.; Zhao, J.; Zhao, G. The nano-Au self-assembled glassy carbon electrode for selective determination of epinephrine in the presence of ascorbic acid. Colloids Surf. B 2007, 54, 230–235. [Google Scholar] [CrossRef]
- Thiagarajan, S.; Chen, S.M. Applications of nanostructured Pt-Au hybrid film for the simultaneous determination of catecholamines in the presence of ascorbic acid. J. Solid State Electrochem. 2009, 13, 445–453. [Google Scholar] [CrossRef]
- Mphuthi, N.G.; Adekunle, A.S.; Ebenso, E.E. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor. Sci. Rep. 2016, 26938, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samdani, K.J.; Samdani, J.S.; Kim, N.; Lee, J. FeMoO4 based, enzyme free Electrochemical biosensor for ultrasensitive detection of norepinephrine. Biosens. Bioelectron. 2016, 81, 445–453. [Google Scholar] [CrossRef]
- Mohammadi, A.; Moghaddam, A.B.; Hosseini, S.; Kazemzad, M.; Dinarvand, R. A norepinephrine biosensor based on a glassy carbon electrode modified with carbon nanotubes. Anal. Methods 2011, 3, 2406–2411. [Google Scholar] [CrossRef]
- Sahu, S.; Behera, B.; Maiti, T.K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 2012, 48, 8835–8837. [Google Scholar] [CrossRef]
- Sun, J.; Yang, L.; Jiang, M.; Shi, Y.; Xu, B.; Ma, H.L. Stability and activity of immobilized trypsin on carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with carbodiimide and glutaraldehyde. J. Chromatogr. B 2017, 1054, 57–63. [Google Scholar] [CrossRef]
- Pandey, S.; Mewada, A.; Thakur, M.; Tank, A.; Sharon, M. Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol. RSC Adv. 2013, 3, 26290–26296. [Google Scholar] [CrossRef]
- Arroyave, M.; Springer, V.; Centurión, M.E. Novel Synthesis Without Separation and Purification Processes of Carbon Dots and Silver/Carbon Hybrid Nanoparticles. J. Inorg. Organomet. Polym. 2020, 30, 1352–1359. [Google Scholar] [CrossRef]
- Baluta, S.; Lesiak, A.; Cabaj, J. Graphene Quantum Dots-Based Electrochemical Biosensor for Catecholamine Neurotransmitters Detection. Electroanalysis 2018, 30, 1781–1790. [Google Scholar] [CrossRef]
- Faridnouri, H.; Ghourchian, H.; Hashemnia, S. Direct electron transfer enhancement of covalently bound tyrosinase to glassy carbon via Woodward’s reagent K. Bioelectrochemistry 2011, 82, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Martinez, T.; Yaniv, D.R.; McCormick, L.D. Scanning tunneling microscopic investigation of surface fouling of glassy carbon surfaces due to phenol oxidation. J. Electroanal. Chem. Interfacial Electrochem. 1991, 313, 129–140. [Google Scholar] [CrossRef]
- Desimoni, E.; Brunetti, B. Presenting Analytical Performances of Electrochemical Sensors. Some Suggestions. Electroanalalysis 2013, 25, 1645–1651. [Google Scholar] [CrossRef]
- Yao, H.; Li, S.; Tang, Y.; Chen, Y.; Chen, Y.; Lin, X. Selective oxidation of serotonin and norepinephrine over eriochrome cyanine R film modified glassy carbon electrode. Electrochim. Acta 2009, 54, 4607–4612. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Beitollahi, H.; Sheikh-Mohseni, M.A.; Naeimi, H.; Taghavinia, N. Novel nanostructure electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of high concentrations of acetaminophene and folic acid. Appl. Catal. A 2010, 378, 195–201. [Google Scholar] [CrossRef]
- Lu, L.P.; Wang, S.Q.; Lin, X.Q. Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor. Anal. Chim. Acta 2004, 519, 161–166. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Sheikh-Mohseni, M.A.; Abdollahi-Alibeik, M.; Benvidi, A. Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material. Sens. Actuators B 2012, 171, 380–386. [Google Scholar] [CrossRef]
Biosensor/Sensor | Technique | Linear Range | LOD | Ref. | |
---|---|---|---|---|---|
1 | GCE/ECR * | CV, DPV | 2–50 μM | 1.5 μM | [36] |
2 | CPE/BH/TiO2 ** | DPV | 4–1100 μM | 0.5 μM | [37] |
3 | GCE/DNA/AuNPs *** | DPV | 0.5–80 μM | 5 nM | [38] |
4 | CPE/NMM **** | CV, DPV | 0.07–2000 μM | 0.04 μM | [39] |
5 | Au-E/Cys/CDs/Tyr | DPV | 1–200 μM | 196 nM | This work |
Concentration of NE in Real Sample [μM] | Cdetected [μM] | Recovery [%] (Average) | RSD (Calculated for 20 Repetitions) |
---|---|---|---|
100.00 | 98.44 | 98.70 | ±0.73 |
100.00 | 99.11 | ||
100.00 | 98.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baluta, S.; Lesiak, A.; Cabaj, J. Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase. Sensors 2020, 20, 4567. https://doi.org/10.3390/s20164567
Baluta S, Lesiak A, Cabaj J. Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase. Sensors. 2020; 20(16):4567. https://doi.org/10.3390/s20164567
Chicago/Turabian StyleBaluta, Sylwia, Anna Lesiak, and Joanna Cabaj. 2020. "Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase" Sensors 20, no. 16: 4567. https://doi.org/10.3390/s20164567
APA StyleBaluta, S., Lesiak, A., & Cabaj, J. (2020). Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase. Sensors, 20(16), 4567. https://doi.org/10.3390/s20164567