Determination of Folic Acid Using Biosensors—A Short Review of Recent Progress
Abstract
:1. Introduction
2. Electrochemical Determination
2.1. Traditional Sensors
2.2. Screen Printed Electrodes (SPEs)-Based Sensors
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andlid, T.A.; D’Aimmo, M.R.; Jastrebova, J. Folate and bifidobacteria. In the Bifidobacteria and Related Organisms; Elsevier: Amsterdam, The Netherlands, 2018; pp. 195–212. [Google Scholar]
- Langston, W.C.; Darby, W.J.; Shukers, C.F.; Day, P.L. Nutritional Cytopenia (Vitamin M Deficiency) in the Monkey. J. Exp. Med. 1938, 68, 923–940. [Google Scholar] [CrossRef] [Green Version]
- Talwar, G.P. Textbook of Biochemistry, Biotechnology, Allied and Molecular Medicine, 4th ed.; Place of Publication Not Identified; Prentice-Hall of India: New Delhi, India, 2015. [Google Scholar]
- Bandžuchová, L.; Šelešovská, R.; Navrátil, T.; Chýlková, J. Electrochemical behavior of folic acid on mercury meniscus modified silver solid amalgam electrode. Electrochim. Acta 2011, 56, 2411–2419. [Google Scholar] [CrossRef]
- Akbar, S.; Anwar, A.; Kanwal, Q. Electrochemical determination of folic acid: A short review. Anal. Biochem. 2016, 510, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Ebara, S. Nutritional role of folate. Congenit. Anom. 2017, 57, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Maynard, C.; Cummins, I.; Green, J.; Weinkove, D. A bacterial route for folic acid supplementation. BMC Biol. 2018, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorelova, V.; Ambach, L.; Rébeillé, F.; Stove, C.; Van Der Straeten, D. Folates in Plants: Research Advances and Progress in Crop Biofortification. Front. Chem. 2017, 5, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, I.; Giladi, M.; Altman-Price, N.; Ortenberg, R.; Mevarech, M. An alternative pathway for reduced folate biosynthesis in bacteria and halophilic archaea. Mol. Microbiol. 2004, 54, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Strozzi, G.P.; Mogna, L. Quantification of Folic Acid in Human Feces After Administration of Bifidobacterium Probiotic Strains. J. Clin. Gastroenterol. 2008, 42, S179–S184. [Google Scholar] [CrossRef]
- Aufreiter, S.; Gregory, J.F.; Pfeiffer, C.M.; Fazili, Z.; Kim, Y.-I.; Marcon, N.; Kamalaporn, P.; Pencharz, P.B.; O’Connor, D.L. Folate is absorbed across the colon of adults: Evidence from cecal infusion of 13C-labeled [6S]-5-formyltetrahydrofolic acid. Am. J. Clin. Nutr. 2009, 90, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Wien, T.N.; Pike, E.; Wisløff, T.; Staff, A.; Smeland, S.; Klemp, M. Cancer risk with folic acid supplements: A systematic review and meta-analysis. BMJ Open 2012, 2, e000653. [Google Scholar] [CrossRef] [Green Version]
- Berlin, N.I.; Rall, D.; Mead, J.A.R.; Freireich, E.J.; Van Scott, E.; Hertz, R.; Lipsett, M.B. Folic Acid Antagonists. Ann. Intern. Med. 1963, 59, 931–957. [Google Scholar] [CrossRef] [PubMed]
- Mehranfar, S.; Zeinali, S.; Hosseini, R.; Mohammadian, M.; Akbarzadeh, A.; Feizi, A.H.P. History of Leukemia: Diagnosis and Treatment from Beginning to Now. Galen Med. J. 2017, 6, 2017. Available online: https://gmj.ir/index.php/gmj/article/view/702 (accessed on 12 February 2017).
- Bronckers, I.M.G.J.; Seyger, M.M.B.; West, D.P.; Lara-Corrales, I.; Tollefson, M.; Tom, W.L.; Hogeling, M.; Belazarian, L.; Zachariae, C.; Mahé, E.; et al. Safety of Systemic Agents for the Treatment of Pediatric Psoriasis. JAMA Dermatol. 2017, 153, 1147–1157. [Google Scholar] [CrossRef]
- Essouma, M.; Noubiap, J.J.N. Therapeutic potential of folic acid supplementation for cardiovascular disease prevention through homocysteine lowering and blockade in rheumatoid arthritis patients. Biomark. Res. 2015, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, E.; Gomes, A.C.; Preto, A.; Cavaco-Paulo, A. Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1113–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnett, F.C.; Whelton, J.C.; Zizic, T.M.; Stevens, M.B. Methotrexate therapy in polymyositis. Ann. Rheum. Dis. 1973, 32, 536–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzger, A.L.; Bohan, A.; Goldberg, L.S.; Bluestone, R.; Pearson, C.M. Polymyositis and Dermatomyositis: Combined Methotrexate and Corticosteroid Therapy. Ann. Intern. Med. 1974, 81, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Cobos, G.A.; Femia, A.; Vleugels, R.A. Dermatomyositis: An Update on Diagnosis and Treatment. Am. J. Clin. Dermatol. 2020, 21, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, C.; Wedderburn, L.R. Treatment of Juvenile Dermatomyositis: An Update. Pediatr. Drugs 2017, 19, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-I. Folate and colorectal cancer: An evidence-based critical review. Mol. Nutr. Food Res. 2007, 51, 267–292. [Google Scholar] [CrossRef]
- Cole, B.F.; Baron, J.A.; Sandler, R.S.; Haile, R.W.; Ahnen, D.J.; Bresalier, R.S.; Mckeown-Eyssen, G.; Summers, R.W.; Rothstein, R.I.; Burke, C.A.; et al. Folic Acid for the Prevention of Colorectal Adenomas. JAMA 2007, 297, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Ebbing, M.; Bønaa, K.H.; Nygård, O.; Arnesen, E.; Ueland, P.M.; Nordrehaug, J.E.; Rasmussen, K.; Njølstad, I.; Refsum, H.; Nilsen, D.W.; et al. Cancer Incidence and Mortality After Treatment With Folic Acid and Vitamin B12. JAMA 2009, 302, 2119–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moazzen, S.; Dolatkhah, R.; Tabrizi, J.S.; Shaarbafi, J.; Alizadeh, B.Z.; De Bock, G.H.; Dastgiri, S. Folic acid intake and folate status and colorectal cancer risk: A systematic review and meta-analysis. Clin. Nutr. 2018, 37, 1926–1934. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.; Bax, H.J.; Josephs, D.H.; Ilieva, K.M.; Pellizzari, G.; Opzoomer, J.; Bloomfield, J.; Fittall, M.; Grigoriadis, A.; Figini, M.; et al. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016, 7, 52553–52574. [Google Scholar] [CrossRef] [Green Version]
- Bailey, L.B.; Rampersaud, G.C.; Kauwell, G.P.A. Folic Acid Supplements and Fortification Affect the Risk for Neural Tube Defects, Vascular Disease and Cancer: Evolving Science. J. Nutr. 2003, 133, 1961S–1968S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shlobin, N.A.; LoPresti, M.A.; Du, R.Y.; Lam, S. Folate fortification and supplementation in prevention of folate-sensitive neural tube defects: A systematic review of policy. J. Neurosurg. Pediatr. 2021, 27, 294–310. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ou, B.-Q.; Li, H.-H.; Zhou, Z.; Mo, J.-L.; Huang, J.; Liang, F.-L. Synergistic Effect of Atorvastatin and Folic Acid on Cardiac Function and Ventricular Remodeling in Chronic Heart Failure Patients with Hyperhomocysteinemia. Med. Sci. Monit. 2018, 24, 3744–3751. [Google Scholar] [CrossRef]
- Pieroth, R.; Paver, S.; Day, S.; Lammersfeld, C. Folate and Its Impact on Cancer Risk. Curr. Nutr. Rep. 2018, 7, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Herbert, V.; Zalusky, R. Interrelations of vitamin b12 and folic acid metabolism: Folic acid clearance studies. J. Clin. Investig. 1962, 41, 1263–1276. [Google Scholar] [CrossRef] [Green Version]
- Quinlivan, E.; McPartlin, J.; McNulty, H.; Ward, M.; Strain, J.; Weir, D.; Scott, J. Importance of both folic acid and vitamin B12 in reduction of risk of vascular disease. Lancet 2002, 359, 227–228. [Google Scholar] [CrossRef]
- Mason, J.B. Diet, folate, and colon cancer. Curr. Opin. Gastroenterol. 2002, 18, 229–234. [Google Scholar] [CrossRef]
- Hirsch, S.; Sanchez, H.; Albala, C.; De La Maza, M.P.; Barrera, G.; Leiva, L.; Bunout, D. Colon cancer in Chile before and after the start of the flour fortification program with folic acid. Eur. J. Gastroenterol. Hepatol. 2009, 21, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Vora, A.; Riga, A.; Dollimore, D.; Alexander, K.S. Thermal stability of folic acid. Thermochim. Acta 2002, 392–393, 209–220. [Google Scholar] [CrossRef]
- Nagaraja, P.; Vasantha, A.R.; Yathirajan, H.S. Spectrophotometric determination of folic acid in pharmaceutical preparations by coupling reactions with iminodibenzyl or 3-aminophenol or sodium molybdate–pyrocatechol. Anal. Biochem. 2002, 307, 316–321. [Google Scholar] [CrossRef]
- Matias, R.; Ribeiro, P.R.S.; Sarraguça, M.; Lopes, J.A. A UV spectrophotometric method for the determination of folic acid in pharmaceutical tablets and dissolution tests. Anal. Methods 2014, 6, 3065–3071. [Google Scholar] [CrossRef]
- Osseyi, E.S.; Wehling, R.L.; Albrecht, J.A. HPLC Determination of Stability and Distribution of Added Folic Acid and Some Endogenous Folates During Breadmaking. Cereal Chem. J. 2001, 78, 375–378. [Google Scholar] [CrossRef]
- Jastrebova, J.; Witthöft, C.; Grahn, A.; Svensson, U.; Jägerstad, M. HPLC determination of folates in raw and processed beetroots. Food Chem. 2003, 80, 579–588. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Rastelli, S.; Mulazzi, A.; Rossi, F. LC-MS/MS Determination of Mono-Glutamate Folates and Folic Acid in Beer. Food Anal. Methods 2018, 12, 722–728. [Google Scholar] [CrossRef]
- Sun, D.; Jin, Y.; Zhao, Q.; Tang, C.; Li, Y.; Wang, H.; Qin, Y.; Zhang, J. Modified EMR-lipid method combined with HPLC-MS/MS to determine folates in egg yolks from laying hens supplemented with different amounts of folic acid. Food Chem. 2021, 337, 127767. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, F.; Yu, Z.; Shi, D.; Liu, S.; Chen, M. Highly sensitive folic acid colorimetric sensor enabled by free-standing molecularly imprinted photonic hydrogels. Polym. Bull. 2021, 1–15, in press. [Google Scholar] [CrossRef]
- Peng, Y.; Dong, W.; Wan, L.; Quan, X. Determination of folic acid via its quenching effect on the fluorescence of MoS2 quantum dots. Microchim. Acta 2019, 186, 605. [Google Scholar] [CrossRef]
- Anastasopoulos, P.; Mellos, T.; Spinou, M.; Tsiaka, T.; Timotheou-Potamia, M. Chemiluminometric and Fluorimetric Determination of Folic Acid. Anal. Lett. 2007, 40, 2203–2216. [Google Scholar] [CrossRef]
- Flores, J.R.; Peñalvo, G.C.; Mansilla, A.E.; Gómez, M.R. Capillary electrophoretic determination of methotrexate, leucovorin and folic acid in human urine. J. Chromatogr. B 2005, 819, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yuan, H.; Xie, C.; Xiao, D. Determination of folic acid by capillary electrophoresis with chemiluminescence detection. J. Chromatogr. A 2006, 1107, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.M.P.D.S.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Future trends in the market for electrochemical biosensing. Curr. Opin. Electrochem. 2018, 10, 107–111. [Google Scholar] [CrossRef]
- Wabaidur, S.M.; Alam, S.M.; Lee, S.H.; Alothman, Z.A.; Eldesoky, G.E. Chemiluminescence determination of folic acid by a flow injection analysis assembly. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 105, 412–417. [Google Scholar] [CrossRef]
- Batra, B.; Narwal, V.; Kalra, V.; Sharma, M.; Rana, J. Folic acid biosensors: A review. Process. Biochem. 2020, 92, 343–354. [Google Scholar] [CrossRef]
- Mohammadi, S.Z.; Beitollahi, H.; Khodaparast, B.; Hosseinzadeh, R. Electrochemical determination of epinephrine, uric acid and folic acid using a carbon paste electrode modified with novel ferrocene derivative and core–shell magnetic nanoparticles. Res. Chem. Intermed. 2019, 45, 1117–1129. [Google Scholar] [CrossRef]
- Lavanya, N.; Fazio, E.; Neri, F.; Bonavita, A.; Leonardi, S.; Neri, G.; Sekar, C. Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode. J. Electroanal. Chem. 2016, 770, 23–32. [Google Scholar] [CrossRef]
- Sadeghi, H.; Shahidi, S.-A.; Raeisi, S.N.; Ghorbani-HasanSaraei, A.; Karimi, F. Electrochemical Determination of Folic Acid in Fruit Juices Samples Using Electroanalytical Sensor Amplified with CuO/SWCNTs and 1-Butyl-2,3-dimethylimidazolium Hexafluorophosphate. Chem. Methodol. 2020, 4, 743–753. [Google Scholar] [CrossRef]
- Mollaei, M.; Ghoreishi, S.M.; Khoobi, A. Electrochemical investigation of a novel surfactant for sensitive detection of folic acid in pharmaceutical and biological samples by multivariate optimization. Measurement 2019, 145, 300–310. [Google Scholar] [CrossRef]
- Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos. Part B Eng. 2019, 172, 666–670. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci. 2017, 495, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT 2014, 57, 679–685. [Google Scholar] [CrossRef]
- Rahmanpour, M.S.; Khalilzadeh, M.A. ZnO nanoparticle modified carbon paste electrode as a sensor for electrochemical determination of tert-butylhydroquinone in food samples», Anal. Bioanal. Electrochemistry 2016, 8, 922–930. [Google Scholar]
- Aflatoonian, M.R.; Tajik, S.; Ekrami-Kakhki, M.-S.; Aflatoonian, B.; Beitollai, H. A nano-sensor based on screen printed electrode (SPE) for electro-chemical detection of vitamin B9. Eurasian Chem. Commun. 2020, 2, 609–618. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Microchim. Acta 2016, 183, 2957–2964. [Google Scholar] [CrossRef]
- Mani, V. Highly Sensitive Determination of Folic Acid Using Graphene Oxide Nanoribbon Film Modified Screen Printed Carbon Electrode. Int. J. Electrochem. Sci. 2017, 12, 475–484. [Google Scholar] [CrossRef]
- Porada, R.; Fendrych, K.; Baś, B. Development of novel Mn-zeolite/graphite modified Screen-printed Carbon Electrode for ultrasensitive and selective determination of folic acid. Measurement 2021, 179, 109450. [Google Scholar] [CrossRef]
- Mani, V. Determination of Folic Acid Using Graphene/Molybdenum Disulfide Nanosheets/Gold Nanoparticles Ternary Composite. Int. J. Electrochem. Sci. 2017, 258–267. [Google Scholar] [CrossRef]
- Safaei, M.; Beitollahi, H.; Shishehbore, M.R. Simultaneous Determination of Epinephrine and Folic Acid Using the Fe3O4@SiO2/GR Nanocomposite Modified Graphite. Russ. J. Electrochem. 2018, 54, 851–859. [Google Scholar] [CrossRef]
- Safaei, M.; Beitollahi, H.; Shishehbore, M.R. Modified Screen Printed Electrode for Selective Determination of Folic Acid. Acta Chim. Slov. 2019, 66, 777–783. [Google Scholar] [CrossRef]
- Gross, R.L.; Reid, J.V.; Newberne, P.M.; Burgess, B.; Marston, R.; Hift, W. Depressed cell-mediated immunity in megaloblastic anemia due to folic acid deficiency. Am. J. Clin. Nutr. 1975, 28, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Cinková, K.; Švorc, Ľ.; Šatkovská, P.; Vojs, M.; Michniak, P.; Marton, M. Simple and Rapid Quantification of Folic Acid in Pharmaceutical Tablets Using a Cathodically Pretreated Highly Boron-doped Polycrystalline Diamond Electrode. Anal. Lett. 2015, 49, 107–121. [Google Scholar] [CrossRef]
- Keeley, G.P.; O’Neill, A.; Holzinger, M.; Cosnier, S.; Coleman, J.N.; Duesberg, G.S. DMF-exfoliated graphene for electrochemical NADH detection. Phys. Chem. Chem. Phys. 2011, 13, 7747–7750. [Google Scholar] [CrossRef] [PubMed]
Analyte | Technique | LR * | LOD | Sensitivity | RSD% | Ref |
---|---|---|---|---|---|---|
FA in pharmaceutical preparations | Spectrophotometric determination by coupling reaction | 0.1–8.0 µg mL−1 | 0.0469 µg mL−1 | 0.0066 µg cm−2 | 0.2805 | [36] |
FA in vegetables | HPLC-UV-Vis | 0.3–100 ng mL−1 | 0.1 ng mL−1 | / | 0.3 | [39] |
FA in beer | LC-MS/MS | / | 0.3 µg L−1 | 1.2 µg L−1 | / | [40] |
FA in egg yolks | Modified EMR-lipid method combined with HPLC-MS/MS | 0.1–100 ng mL−1 | 18.3 ng mL−1 | / | 3.9 (HC) | [41] |
8.1 (MC) | ||||||
10 (LC) | ||||||
FA in commercial preparations | Chemiluminometric procedure | 6.0–114 µg mL−1 | 2.0 µg mL−1 | / | 1 | [44] |
Fluorimetric procedure | 0.02–1.1 µg mL−1 | 0.002 µg mL−1 | 0.7 | |||
FA in human urine | Capillary electrophoresis | 0.5–6.0 mg L−1 | 0.30 mg L−1 | / | 0.4–0.7(MT) | [45] |
2.0–3.9 (PA) | ||||||
1.2–1.7 (PH) | ||||||
FA in pharmaceutical tablets | Capillary electrophoresis with chemiluminescence determination | 5.0 × 10−8–10−5 M | 2.0 × 10−8 M | / | 1.1 (MT) | [46] |
1.5 (PA) | ||||||
4.9 (PH) | ||||||
FA in pharmaceutical preparations | Flow-injection/chemiluminescence determination | 2.5 × 10−5–3 × 10−7 M | 2.3 × 10−8 M | / | 3.5 | [48] |
Sample | Spiked (µM) | Found (µM) | Recovery (%) | R.S.D. (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EP | UA | FA | EP | UA | EP | EP | UA | FA | EP | UA | FA | |
EP ampoule | 0 | 0 | 0 | 9.0 | - | - | - | - | - | 2.7 | - | - |
2.5 | 15.0 | 17.5 | 11.4 | 15.5 | 17.1 | 99.1 | 103.3 | 97.7 | 3.2 | 1.9 | 2.8 | |
5.0 | 25.0 | 27.5 | 14.3 | 24.8 | 27.9 | 102.1 | 99.2 | 101.4 | 3.1 | 2.3 | 2.7 | |
7.5 | 35.0 | 37.5 | 17.1 | 35.1 | 37.3 | 103.6 | 100.3 | 99.5 | 1.9 | 3.3 | 2.4 | |
10.0 | 45.0 | 47.5 | 18.5 | 45.6 | 48.8 | 97.3 | 101.3 | 102.7 | 2.2 | 1.8 | 3.1 | |
FA tablet | 0 | 0 | 0 | - | - | 17.0 | - | - | - | - | 3.4 | - |
5.0 | 17.5 | 2.5 | 5.1 | 17.1 | 19.7 | 102.7 | 97.7 | 101.0 | 2.3 | 1.9 | 3.2 | |
10.0 | 2.5 | 5.0 | 9.8 | 22.9 | 21.9 | 98.0 | 101.8 | 99.5 | 3.1 | 2.3 | 1.9 | |
15.0 | 27.5 | 7.5 | 15.1 | 27.1 | 24.3 | 100.7 | 98.5 | 99.2 | 1.7 | 2.8 | 2.7 | |
20.0 | 32.5 | 10.0 | 19.8 | 33.5 | 27.5 | 99.0 | 103.1 | 101.8 | 2.8 | 3.1 | 1.8 | |
0 | 0 | 0 | - | 10 | - | - | - | - | - | - | - | |
7.5 | 10.0 | 30.0 | 7.4 | 20.2 | 30.9 | 98.7 | 101.0 | 103.0 | 2.9 | 3.2 | 1.6 | |
12.5 | 20.0 | 40.0 | 12.7 | 29.5 | 39.1 | 101.6 | 98.3 | 97.7 | 3.4 | 2.7 | 2.6 | |
17.5 | 30.0 | 50.0 | 18.1 | 41.2 | 49.5 | 103.4 | 103.0 | 99.0 | 1.6 | 2.6 | 3.1 | |
22.5 | 40.0 | 60.0 | 22.4 | 49.8 | 61.5 | 99.5 | 99.6 | 102.4 | 2.2 | 1.8 | 2.9 |
Sample | FA Added (µM) | FA Expected (µM) | FA Found (µM) | Recovery % |
---|---|---|---|---|
Orange Juice | / | / | 9.89 ± 0.54 | / |
10.00 | 19.89 | 20.21 ± 0.87 | 101.6 | |
Apple Juice | / | / | 8.51 ± 0.34 | / |
10.00 | 18.51 | 18.38 ± 0.65 | 99.29 |
Sample | Initial Found (µM) | Added (µM) | Found (µM) | Recovery (%) |
---|---|---|---|---|
TABLET | 3.0 | 0.0 | 2.82 | 94 |
3.0 | 1.0 | 4.14 | 104 | |
3.0 | 2.0 | 5.11 | 102 | |
3.0 | 3.0 | 6.07 | 101 | |
3.0 | 4.0 | 6.86 | 98 | |
URINE | 0.0 | 0.0 | 0.00 | - |
0.0 | 3.0 | 3.07 | 102 | |
0.0 | 6.0 | 6.20 | 103 | |
0.0 | 9.0 | 8.84 | 98 |
Sample | TBHQ Added | FA Added | Found TBHQ Proposed Method | Found TBHQ Published Method | Found FA Proposed Method | Found FA Published Method |
---|---|---|---|---|---|---|
Soybean oil | - | - | 2.6 ± 0.2 | 2.6 ± 0.2 | - | - |
5.00 | - | 7.5 ± 0.3 | 7.7 ± 0.4 | - | - | |
Sesame oil | - | - | 5.7 ± 0.4 | 5.8 ± 0.6 | - | - |
10.00 | - | 15.4 ± 0.5 | 15.3 ± 0.6 | - | - | |
Apple juice | - | - | - | 10.4 ± 0.7 | 10.2 ± 0.8 | |
- | 10.00 | - | - | 20.6 ± 0.7 | 20.1 ± 0.8 | |
Drinking water | 10.00 | 10.00 | 9.8 ± 0.7 | 10.5 ± 0.6 | 10.5 ± 0.5 | 9.8 ± 0.8 |
Analyte | Technique | LOD | Working Range | Sample | Ref. |
---|---|---|---|---|---|
Vitamin B9 in real specimens. | SPE modified with La+3/Co3O4 nano-cubes. | 0.3 µM | 1–600 µM | Human urine samples, tablet. | [58] |
N-acetylcysteine in the presence of paracetamol and folic acid | CPE modified with Pt-Co nanoparticles and 2-(3,4 dihydroxy phenethyl) isoindoline-1,3-dione | 0.04 µM | 0.08–650 µM | Human urine samples, tablet. | [59] |
Simultaneous determination of sulfisoxazole and folic acid. | CuO Nanoparticles decorated on SWCNT nanocomposite modified CPE. | 0.8 µM | 0.07–500 µM | Human urine and tablet. | [59] |
Folic acid in real specimens. | SPE modified with Graphene Oxide Nanoribbons | 0.02 µM | 0.1–1600 µM | Human urine samples, tablet | [60] |
Folic acid in real specimens. | Mn-zeolite/Graphite modified Screen-printed Carbon Electrode | 0.003 µM | 0.004–1 µM | Pharmaceutical samples | [61] |
Folic acid in real specimens. | SPE modified using GNS-MoS2-AuNPs | 38.5 nM | 50 nM–1150 µM | Human urine | [62] |
Simultaneous determination of folic acid and epinephrine | Graphite SPE modified with Fe3O4@SiO2 | 1 μM | 5–1000 μM | Human blood serum and urine | [63] |
Folic acid in real specimens. | SPE modified with NiFe2O4 nanoparticles | 0.034 μM | 0.1–500 μM | Human urine | [64] |
Sample | Spiked | Found | Recovery, % | Rsd % | ||||
---|---|---|---|---|---|---|---|---|
Epinephrine | FA | Epinephrine | FA | Epinephrine | FA | Epinephrine | FA | |
Human blood serum | 0 | 0 | - | - | - | - | - | - |
10.0 | 5.0 | 10.3 | 4.9 | 103.0 | 98.0 | 3.2 | 2.4 | |
20.0 | 60.0 | 19.8 | 61.6 | 99.0 | 102.7 | 17 | 2.7 | |
Urine | 0 | 0 | - | - | - | - | - | - |
12.5 | 45.0 | 12.3 | 45.3 | 98.4 | 100.7 | 2.4 | 3.1 | |
22.5 | 55.0 | 23.1 | 53.7 | 102.6 | 97.6 | 1.8 | 2.8 | |
Epinephrine Injection | 0 | 0 | 10.5 | - | - | - | 3.2 | - |
2.5 | 30.0 | 12.7 | 30.3 | 97.7 | 101.0 | 1.9 | 2.6 | |
5.0 | 39.7 | 15.9 | 40.3 | 102.6 | 99.2 | 2.4 | 3.3 | |
Folic Acid Tablet | 0 | 0 | - | 15.0 | - | - | - | 2.7 |
5.0 | 25.0 | 4.9 | 0.9 | 98.0 | 102.2 | 2.4 | 1.6 | |
10.0 | 35.0 | 10.1 | 49.2 | 101.0 | 98.4 | 2.7 | 3.0 |
Sample | Spiked | Found | Recovery (%) | Rsd (%) |
---|---|---|---|---|
Folic acid tablet | 0 | 15.0 | - | 3.2 |
2.5 | 17.8 | 101.7 | 1.7 | |
5.0 | 19.5 | 97.5 | 2.8 | |
7.5 | 23.3 | 103.5 | 2.2 | |
10.0 | 24.8 | 99.2 | 2.4 | |
Urine | 0 | - | - | - |
10.0 | 10.3 | 103.0 | 3.4 | |
20.0 | 19.9 | 99.5 | 1.7 | |
30.0 | 29.1 | 97.0 | 2.3 | |
40.0 | 40.5 | 101.2 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Tinno, A.; Cancelliere, R.; Micheli, L. Determination of Folic Acid Using Biosensors—A Short Review of Recent Progress. Sensors 2021, 21, 3360. https://doi.org/10.3390/s21103360
Di Tinno A, Cancelliere R, Micheli L. Determination of Folic Acid Using Biosensors—A Short Review of Recent Progress. Sensors. 2021; 21(10):3360. https://doi.org/10.3390/s21103360
Chicago/Turabian StyleDi Tinno, Alessio, Rocco Cancelliere, and Laura Micheli. 2021. "Determination of Folic Acid Using Biosensors—A Short Review of Recent Progress" Sensors 21, no. 10: 3360. https://doi.org/10.3390/s21103360
APA StyleDi Tinno, A., Cancelliere, R., & Micheli, L. (2021). Determination of Folic Acid Using Biosensors—A Short Review of Recent Progress. Sensors, 21(10), 3360. https://doi.org/10.3390/s21103360