A Biomimetic Model of Adaptive Contrast Vision Enhancement from Mantis Shrimp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory of Method
2.2. Experimental Schemes of Method
- i.
- Vertically oriented linear polarizer and the light emitting diode (LED) panel: In a dark room, we combined a linear polarizer with an LED light source, intended to be a typical polarization object. The light source used a Yongnuo YN300 II LED light. To avoid overexposure when the polarizing imager was imaging, the intensity of the light source was selected as the 01 level. With a 0° orientation of the imager as the reference orientation, the main axis of the linear polarizer was perpendicular to it (i.e., the polarization direction was 90°).
- ii.
- Arbitrarily oriented linear polarizers and the LED panel: This scene was the same as i); however, the major axis orientation of the linear polarizer was arbitrary, i.e., the polarization direction was unknown (simulating a random case).
- iii.
- The plastic socket and the painted wall: In a bright room, the socket and the wall were white, and the socket was covered with a thin and uneven white paint.
- iv.
- The iron box and the green grass: On the outdoor green grass, we placed an iron box with smooth green paint on the surface.
- v.
- The iron box and the land covered by shadows: We made a shadow scene with a visor outdoors and placed the iron box in iv) under the shadow, as a scene with low visibility.
3. Results and Discussion
3.1. Contrast Evaluation Indexes
3.1.1. Gray Scale Contrast
3.1.2. Signal-to-Clutter Ratio
3.1.3. Fisher Distance
3.2. Experimental Results
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernard, G.D.; Wehner, R. Functional similarities between polarization vision and color vision. Vis. Res. 1977, 17, 1019–1028. [Google Scholar] [CrossRef]
- Foster, J.J.; Temple, S.E.; How, M.J.; Daly, I.M.; Sharkey, C.R.; Wilby, D.; Roberts, N.W. Polarisation vision: Overcoming challenges of working with a property of light we barely see. Sci. Nat. 2018, 105, 27. [Google Scholar] [CrossRef] [Green Version]
- Gafni, A.; Hardt, H.; Schlessinger, J.; Steinberg, I.Z. Circular polarization of fluorescence of chlorophyll in solution and in native structures. Biochim. Biophys. Acta Bioenerg. 1975, 387, 256–264. [Google Scholar] [CrossRef]
- Wynberg, H.; Meijer, E.; Hummelen, J.; Dekkers, H.; Schippers, P.; Carlson, A. Circular polarization observed in bioluminescence. Nature 1980, 286, 641–642. [Google Scholar] [CrossRef]
- Cronin, T.W.; Shashar, N.; Caldwell, R.L.; Marshall, J.; Cheroske, A.G.; Chiou, T.-H. Polarization vision and its role in biological signaling. Integr. Comp. Biol. 2003, 43, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Panigrahi, S.; Fade, J.; Alouini, M. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog. J. Opt. 2015, 17, 065703. [Google Scholar] [CrossRef] [Green Version]
- Wehner, R. Polarization vision – a uniform sensory capacity? J. Exp. Biol. 2001, 204, 2589–2596. [Google Scholar] [PubMed]
- Horváth, G.; Gál, J.; Wehner, R. Why are water-seeking insects not attracted by mirages? The polarization pattern of mirages. Sci. Nat. 1997, 84, 300–303. [Google Scholar] [CrossRef]
- Glantz, R.M.; Schroeter, J.P. Polarization contrast and motion detection. J. Comp. Physiol. A 2006, 192, 905–914. [Google Scholar] [CrossRef]
- Sabbah, S.; Shashar, N. Polarization contrast of zooplankton: A model for polarization-based sighting distance. Vis. Res. 2006, 46, 444–456. [Google Scholar] [CrossRef] [Green Version]
- How, M.J.; Christy, J.H.; Temple, S.E.; Hemmi, J.M.; Marshall, N.J.; Roberts, N.W. Target detection is enhanced by polarization vision in a fiddler crab. Curr. Biol. 2015, 25, 3069–3073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiou, T.-H.; Caldwell, R.L.; Hanlon, R.T.; Cronin, T.W. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods. In Proceedings of the SPIE Defense and Security Symposium, Orlando, FL, USA, 16–20 March 2008. [Google Scholar]
- Momeni, M.; Titus, A.H. An analog VLSI chip emulating polarization vision of octopus retina. IEEE Trans. Neural Netw. 2006, 17, 222–232. [Google Scholar] [CrossRef] [PubMed]
- York, T.; Powell, S.B.; Gao, S.; Kahan, L.; Charanya, T.; Saha, D.; Roberts, N.W.; Cronin, T.W.; Marshall, J.; Achilefu, S.; et al. Bioinspired polarization imaging sensors: From circuits and optics to signal processing algorithms and biomedical applications. Proc. IEEE 2014, 102, 1450–1469. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.J. A unique colour and polarization vision system in mantis shrimps. Nature 1988, 333, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Chiou, T.-H.; Kleinlogel, S.; Cronin, T.; Caldwell, R.; Loeffler, B.; Siddiqi, A.; Goldizen, A.; Marshall, J. Circular polarization vision in a stomatopod crustacean. Curr. Biol. 2008, 18, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Kleinlogel, S.; White, A.G. The secret world of shrimps: Polarisation vision at its best. PLoS ONE 2008, 3, e2190. [Google Scholar] [CrossRef] [Green Version]
- Marshall, N.; Land, M.F.; King, C.; Cronin, T. The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: The detection of polarized light. Philos Trans. R. Soc. Lond. B Biol. Sci. 1991, 334, 33–56. [Google Scholar] [CrossRef]
- Kleinlogel, S.; Marshall, N.J. Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. J. Exp. Biol. 2006, 209, 4262–4272. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.N.; Cronin, T.W. Mantis shrimp navigate home using celestial and idiothetic path integration. Curr. Biol. 2020. [Google Scholar] [CrossRef]
- Powell, S.B.; Garnett, R.; Marshall, J.; Rizk, C.; Gruev, V. Bioinspired polarization vision enables underwater geolocalization. Sci. Adv. 2018, 4, eaao6841. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Wang, H.; Chen, Z.; Wei, Y.; Wu, Y. Polarization calculation and underwater target detection inspired by biological visual imaging. Sens. Transducers 2014, 169, 33. [Google Scholar]
- Garcia, M.; Edmiston, C.; Marinov, R.; Vail, A.; Gruev, V. Bio-inspired color-polarization imager for real-time in situ imaging. Optica 2017, 4, 1263–1271. [Google Scholar] [CrossRef]
- Garcia, M.; Davis, T.; Blair, S.; Cui, N.; Gruev, V. Bioinspired polarization imager with high dynamic range. Optica 2018, 5, 1240–1246. [Google Scholar] [CrossRef]
- Land, M.; Marshall, J.; Brownless, D.; Cronin, T. The eye-movements of the mantis shrimp Odontodactylus scyllarus (Crustacea: Stomatopoda). J. Comp. Physiol. A 1990, 167, 155–166. [Google Scholar] [CrossRef]
- Daly, I.M.; How, M.J.; Partridge, J.C.; Roberts, N.W. The independence of eye movements in a stomatopod crustacean is task dependent. J. Exp. Biol. 2017, 220, 1360–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, I.M.; How, M.J.; Partridge, J.C.; Roberts, N.W. Gaze stabilization in mantis shrimp in response to angled stimuli. J. Comp. Physiol. A 2019, 205, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Marshall, N.; Land, M.; Cronin, T. Shrimps that pay attention: Saccadic eye movements in stomatopod crustaceans. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130042. [Google Scholar] [CrossRef] [Green Version]
- Daly, I.M.; How, M.J.; Partridge, J.C.; Temple, S.E.; Marshall, N.J.; Cronin, T.W.; Roberts, N.W. Dynamic polarization vision in mantis shrimps. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Horváth, G.; Lerner, A.; Shashar, N. Polarized Light and Polarization Vision in Animal Sciences; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Stokes, G.G. On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Philos. Soc. 1851, 9, 399. [Google Scholar] [CrossRef]
- Prete, F.R. Complex Worlds from Simpler Nervous Systems; MIT press: Cambridge, MA, USA, 2004. [Google Scholar]
- Richert, M.; Orlik, X.; de Martino, A. Adapted polarization state contrast image. Opt. Express 2009, 17, 14199–14210. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J. Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track. Pattern Recognit. 2012, 45, 393–406. [Google Scholar] [CrossRef]
- Anna, G.; Goudail, F.; Dolfi, D. Polarimetric target detection in the presence of spatially fluctuating Mueller matrices. Opt. Lett. 2011, 36, 4590–4592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, B.; Wang, X.; Gan, X.; Yang, T.; Gao, J. A Biomimetic Model of Adaptive Contrast Vision Enhancement from Mantis Shrimp. Sensors 2020, 20, 4588. https://doi.org/10.3390/s20164588
Zhong B, Wang X, Gan X, Yang T, Gao J. A Biomimetic Model of Adaptive Contrast Vision Enhancement from Mantis Shrimp. Sensors. 2020; 20(16):4588. https://doi.org/10.3390/s20164588
Chicago/Turabian StyleZhong, Binbin, Xin Wang, Xin Gan, Tian Yang, and Jun Gao. 2020. "A Biomimetic Model of Adaptive Contrast Vision Enhancement from Mantis Shrimp" Sensors 20, no. 16: 4588. https://doi.org/10.3390/s20164588
APA StyleZhong, B., Wang, X., Gan, X., Yang, T., & Gao, J. (2020). A Biomimetic Model of Adaptive Contrast Vision Enhancement from Mantis Shrimp. Sensors, 20(16), 4588. https://doi.org/10.3390/s20164588