Experimental Investigation of Actively Q-Switched Er3+:ZBLAN Fiber Laser Operating at around 2.8 µm
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
3.1. CW (Continuous Wave) Operation of Er3+:ZBLAN Fiber Laser
3.2. Q-Switched Operation of Er3+:ZBLAN Fiber Laser Containing 3.1 m of Active Fiber
3.3. Q-Switched Operation of Er3+:ZBLAN Fiber Laser Containing 2.1 m Active Fiber
3.4. Q-Switched Operation of Er3+:ZBLAN Fiber Laser Containing 1.1 m of Active Fiber
4. Impact
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Falconi, M.C.; Laneve, D.; Prudenzano, F. Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide. Fibers 2017, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhu, G.; Wei, C.; Kotov, L.; Wang, J.; Tong, M.; Norwood, R.A.; Peyghambarian, N. Pulsed fluoride fiber lasers at 3 μm [Invited]. J. Opt. Soc. Am. B 2017, 34, A15. [Google Scholar] [CrossRef]
- Majewski, M.R.; Woodward, R.I.; Jackson, S.D. Dysprosium Mid-Infrared Lasers: Current Status and Future Prospects. Laser Photonics Rev. 2020, 14. [Google Scholar] [CrossRef] [Green Version]
- Woodward, R.I.; Majewski, M.R.; Hudson, D.D.; Jackson, S.D. Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing. APL Photonics 2019, 4, 020801. [Google Scholar] [CrossRef] [Green Version]
- Molebny, V.; McManamon, P.; Steinvall, O.; Kobayashi, T.; Chen, W. Laser radar: Historical prospective—from the East to the West. Opt. Eng. 2016, 56, 31220. [Google Scholar] [CrossRef]
- Lambert-Girard, S.; Allard, M.; Piché, M.; Babin, F. Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements. Appl. Opt. 2015, 54, 1647. [Google Scholar] [CrossRef]
- Scholle, K.; Lamrini, S.; Koopmann, P.; Fuhrberg, P. 2 µm Laser Sources and Their Possible Applications. In Frontiers in Guided Wave Optics and Optoelectronics; Pal, B., Ed.; IntechOpen: Rijeka, Croatia, 2010. [Google Scholar]
- Frayssinous, C.; Fortin, V.; Bérubé, J.-P.; Fraser, A.; Vallée, R. Resonant polymer ablation using a compact 3.44 μm fiber laser. J. Mater. Process. Technol. 2018, 252, 813–820. [Google Scholar] [CrossRef]
- Churbanov, M.F.; Denker, B.I.; Galagan, B.I.; Koltashev, V.V.; Plotnichenko, V.G.; Sukhanov, M.V.; Sverchkov, S.E.; Velmuzhov, A.P. First demonstration of ~5 µm laser action in terbium-doped selenide glass. Appl. Phys. A 2020, 126, 117. [Google Scholar] [CrossRef]
- Heck, M.; Gauthier, J.-C.; Tünnermann, A.; Vallée, R.; Nolte, S.; Bernier, M. Long period fiber gratings for the mitigation of parasitic laser effects in mid-infrared fiber amplifiers. Opt. Express 2019, 27, 21347–21357. [Google Scholar] [CrossRef]
- Gauthier, J.-C.; Fortin, V.; Duval, S.; Vallée, R.; Bernier, M. In-amplifier mid-infrared supercontinuum generation. Opt. Lett. 2015, 40, 5247–5250. [Google Scholar] [CrossRef]
- Tokita, S.; Murakami, M.; Shimizu, S.; Hashida, M.; Sakabe, S. 12 WQ-switched Er: ZBLAN fiber laser at 2.8 µm. Opt. Lett. 2011, 36, 2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paradis, P.; Fortin, V.; Aydin, Y.O.; Vallée, R.; Bernier, M. 10 W-level gain-switched all-fiber laser at 2.8 μm. Opt. Lett. 2018, 43, 3196–3199. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Jackson, S.D.; Hudson, D.D. Ultrafast pulses from a mid-infrared fiber laser. Opt. Lett. 2015, 40, 4226–4228. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-L.; Wang, Y.; Luan, K.; Chen, H.; Tao, M.; Si, J. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm. Appl. Phys. B 2017, 123, 105. [Google Scholar] [CrossRef]
- Lamrini, S.; Scholle, K.; Schäfer, M.; Ward, J.; Francis, M.; Farries, M.; Sujecki, S.; Benson, T.; Seddon, A.; Oladeji, A.; et al. High-Energy Q-switched Er: ZBLAN Fiber Laser at 2.79 μm. In Proceedings of the 2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference, Optical Society of America, Munich, Germany, 21–25 June 2015; p. CJ_7_2. [Google Scholar]
- Woodward, R.I.; Majewski, M.R.; Macadam, N.; Hu, G.; Albrow-Owen, T.; Hasan, T.; Jackson, S.D. Q-switched Dy:ZBLAN fiber lasers beyond 3 μm: Comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. Opt. Express 2019, 27, 15032–15045. [Google Scholar] [CrossRef] [PubMed]
- Pajewski, Ł.; Sojka, L.; Lamrini, S.; Benson, T.M.; Seddon, A.B.; Sujecki, S. Gain-switched Dy3+: ZBLAN fiber laser operating around 3 μm. J. Phys. Photonics 2019, 2, 014003. [Google Scholar] [CrossRef]
- Bawden, N.; Matsukuma, H.; Henderson-Sapir, O.; Klantsataya, E.; Tokita, S.; Ottaway, D.J. Actively Q-switched dual-wavelength pumped Er3+ : ZBLAN fiber laser at 3.47 µm. Opt. Lett. 2018, 43, 2724–2727. [Google Scholar] [CrossRef]
- Sujecki, S. Simple and efficient method of lines based algorithm for modeling of erbium doped Q-switched fluoride fiber lasers. J. Opt. Soc. Am. B 2016, 33, 2288. [Google Scholar] [CrossRef] [Green Version]
- Anashkina, E.A.; Dorofeev, V.V.; Koltashev, V.V.; Kim, A.V. Development of Er3+-doped high-purity tellurite glass fibers for gain-switched laser operation at 2.7 µm. Opt. Mater. Express 2017, 7, 4337. [Google Scholar] [CrossRef]
- Falconi, M.C.; Laneve, D.; Bozzetti, M.; Fernandez, T.T.; Galzerano, G.; Prudenzano, F. Design of an Efficient Pulsed Dy3+: ZBLAN Fiber Laser Operating in Gain Switching Regime. J. Light. Technol. 2018, 36, 5327–5333. [Google Scholar] [CrossRef]
- Sujecki, S. Numerical Analysis of Q-Switched Erbium Ion Doped Fluoride Glass Fiber Laser Operation Including Spontaneous Emission. Appl. Sci. 2018, 8, 803. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Hudson, D.D.; Jackson, S.D. Actively Q-switched 2.9 µm Ho3+/Pr3+-doped fluoride fiber laser. Opt. Lett. 2012, 37, 2145. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Jackson, S.D.; Hudson, D. High peak power actively Q-switched Ho3+, Pr3+-co-doped fluoride fibre laser. Electron. Lett. 2013, 49, 766–767. [Google Scholar] [CrossRef]
- Aydin, Y.O.; Fortin, V.; Vallée, R.; Bernier, M. Towards power scaling of 2.8 μm fiber lasers. Opt. Lett. 2018, 43, 4542–4545. [Google Scholar] [CrossRef]
- Fortin, V.; Bernier, M.; Bah, S.T.; Vallée, R. 30 W fluoride glass all-fiber laser at 2.94 μm. Opt. Lett. 2015, 40, 2882–2885. [Google Scholar] [CrossRef]
- Eichhorn, M. Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers. IEEE J. Quantum Electron. 2005, 41, 1574–1581. [Google Scholar] [CrossRef]
- Eichhorn, M. Development of a high-pulse-energy Q-switched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers. Opt. Lett. 2007, 32, 1056–1058. [Google Scholar] [CrossRef]
- Siegman, A.E. Lasers; University Science Books: Mill Valley, CA, USA, 1986; ISBN 978-0-935702-11-8. [Google Scholar]
- Malouf, A. Advancing Mid-IR Lasers. Ph.D. Thesis, University of Adelaide, School of Physical Sciences, Adelaide, Australia, 2020. [Google Scholar]
- Alster, T.S. Clinical and histologic evaluation of six erbium: YAG lasers for cutaneous resurfacing. Lasers Surg. Med. 1999, 24, 87–92. [Google Scholar] [CrossRef]
- Hutson, M.S.; Ivanov, B.; Jayasinghe, A.; Adunas, G.; Xiao, Y.; Guo, M.; Kozub, J. Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea. Opt. Express 2009, 17, 9840–9850. [Google Scholar] [CrossRef] [Green Version]
Gain Medium | Modulation Device | Peak Power (kW) | Pulse Duration (ns) | Average Power (W) | Repetition Rate (kHz) | Year and Reference |
---|---|---|---|---|---|---|
Er3+:ZBLAN (35 µm core MM) | AOM | 0.9 | 90 | 12 | 120 | 2011 [12] |
Er3+:ZBLAN (33 µm core MM) | AOM | 10.6 | 53 | 0.56 | 1 | 2015 [16] |
Er3+:ZBLAN (15 µm core SM) | GS | 0.42 | 170 | 11.2 | 140 | 2018 [13] |
Ho3+/Pr3+:ZBLAN (10 µm core SM) | AOM | 0.576 | 33 | 0.019 | 1 | 2013 [25] |
Er3+:ZBLAN (15 µm core SM) | AOM | 0.821 | 56 | 0.46 | 10 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sojka, L.; Pajewski, L.; Lamrini, S.; Farries, M.; Benson, T.M.; Seddon, A.B.; Sujecki, S. Experimental Investigation of Actively Q-Switched Er3+:ZBLAN Fiber Laser Operating at around 2.8 µm. Sensors 2020, 20, 4642. https://doi.org/10.3390/s20164642
Sojka L, Pajewski L, Lamrini S, Farries M, Benson TM, Seddon AB, Sujecki S. Experimental Investigation of Actively Q-Switched Er3+:ZBLAN Fiber Laser Operating at around 2.8 µm. Sensors. 2020; 20(16):4642. https://doi.org/10.3390/s20164642
Chicago/Turabian StyleSojka, Lukasz, Lukasz Pajewski, Samir Lamrini, Mark Farries, Trevor M. Benson, Angela B. Seddon, and Slawomir Sujecki. 2020. "Experimental Investigation of Actively Q-Switched Er3+:ZBLAN Fiber Laser Operating at around 2.8 µm" Sensors 20, no. 16: 4642. https://doi.org/10.3390/s20164642
APA StyleSojka, L., Pajewski, L., Lamrini, S., Farries, M., Benson, T. M., Seddon, A. B., & Sujecki, S. (2020). Experimental Investigation of Actively Q-Switched Er3+:ZBLAN Fiber Laser Operating at around 2.8 µm. Sensors, 20(16), 4642. https://doi.org/10.3390/s20164642