UV Sensor Based on Fiber Bragg Grating Covered with Graphene Oxide Embedded in Composite Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Woo, R.S.C.; Chen, Y.; Zhu, H.; Li, J.; Kim, J.K.; Leung, C.K.Y. Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part I: Photo-degradation. Compos. Sci. Technol. 2007, 67, 3448–3456. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, F.; Li, J.; He, C.; Peng, X.; Huang, Z.; Fang, P. Effect of ultraviolet absorber on photo-degradation of epoxy coating studied by slow positron beam. Acta Phys. Pol. A 2017, 132, 1523–1526. [Google Scholar] [CrossRef]
- Pleşa, I.; Noţingher, P.V.; Schlögl, S.; Sumereder, C.; Muhr, M. Properties of polymer composites used in high-voltage applications. Polymer 2016, 8, 173. [Google Scholar] [CrossRef]
- Awaja, F.; Pigram, P.J. Surface molecular characterisation of different epoxy resin composites subjected to UV accelerated degradation using XPS and ToF-SIMS. Polym. Degrad. Stab. 2009, 94, 651–658. [Google Scholar] [CrossRef]
- Iskanderova, Z.; Kleiman, J.; Gudimenko, Y.; Tennyson, R.C.; Morison, W.D. Comparison of surface modification of polymeric materials for protection from severe oxidative environments using different ion sources. Surf. Coat. Technol. 2000, 127, 18–23. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, C.G. Low earth orbit space environment simulation and its effects on graphite/epoxy composites. Compos. Struct. 2006, 72, 218–226. [Google Scholar] [CrossRef]
- Ghasemi-Kahrizsangi, A.; Neshati, J.; Shariatpanahi, H.; Akbarinezhad, E. Improving the UV degradation resistance of epoxy coatings using modified carbon black nanoparticles. Prog. Org. Coat. 2015, 85, 199–207. [Google Scholar] [CrossRef]
- Katnam, K.B.; Comer, A.J.; Roy, D.; Da Silva, L.F.M.; Young, T.M. Composite repair in wind turbine blades: An overview. J. Adhes. 2015, 91, 113–139. [Google Scholar] [CrossRef]
- Nikafshar, S.; Zabihi, O.; Ahmadi, M.; Mirmohseni, A.; Taseidifar, M.; Naebe, M. The effects of UV light on the chemical and mechanical properties of a transparent epoxy-diamine system in the presence of an organic UV absorber. Materials 2017, 10, 180. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications. Mater. Des. 2015, 71, 17–25. [Google Scholar] [CrossRef]
- Kumar, B.G.; Singh, R.P.; Nakamura, T. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation. J. Compos. Mater. 2002, 36, 2713–2733. [Google Scholar] [CrossRef]
- Liu, M.; Horrocks, A.R. Effect of carbon black on UV stability of LLDPE films under artificial weathering conditions. Polym. Degrad. Stab. 2002, 75, 485–499. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Mwila, J.; Miraftab, M. Influence of carbon black on properties of oriented polypropylene. J. Mater. Sci. 1999, 34, 4333–4340. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Farrell, G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 2016, 16, 99. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.S.; Ruffin, P. Fiber Optic Sensors. Wiley Encycl. Biomed. Eng. 2006. [Google Scholar] [CrossRef]
- Taki, M.; Signorini, A.; Oton, C.J.; Nannipieri, T.; Di Pasquale, F. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding. Opt. Lett. 2013, 38, 4162. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Hwang, D.; Moon, S.; Moon, D.S.; Chung, Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 2008, 16, 11369. [Google Scholar] [CrossRef]
- Lesiak, P.; Sobotka, P.; Bieda, M.; Dużyńska, A.; Wróblewska, A.; Chychłowski, M.; Woliński, T.R. Innovative UV sensor based on highly birefringent fiber covered by graphene oxide. Photonics Lett. Pol. 2015, 7, 124–126. [Google Scholar] [CrossRef] [Green Version]
- Lesiak, P.; Szelagowski, L.; Bieda, M.; Sobotka, P.; Duzynska, A.; Wroblewska, A.; Markowski, K.; Osuch, T.; Siemion, A.; Wolinski, T.R. UVA Sensor Based on Highly Birefringent Fiber Covered with Graphene Oxide. IEEE Photonics Technol. Lett. 2018, 30, 845–848. [Google Scholar] [CrossRef]
- Qi, B.; Bannister, M.; Liu, X.; Michie, A.; Rajasekera, L.; Ashton, B. Response of an embedded fibre bragg grating to thermal and mechanical loading in a composite laminate. Mater. Forum 2004, 27, 93–100. [Google Scholar]
- Wu, Z.; Chen, Z.; Du, X.; Logan, J.M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.R.; Tanner, D.B.; Hebard, A.F.; et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Raman Spectroscopy in Graphene Related Systems; John Wiley & Sons: Weinheim, Germany, 2011. [Google Scholar]
- Sobon, G.; Sotor, J.; Jagiello, J.; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K.M. Graphene Oxide vs Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 2012, 20, 19463. [Google Scholar] [CrossRef]
- Azevedo, L.; Antonaya-Martin, J.L.; Molinero-Mourelle, P.; del Río-Highsmith, J. Improving PMMA resin using graphene oxide for a definitive prosthodontic rehabilitation-A clinical report. J. Clin. Exp. Dent. 2019, 11, e670–e674. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.M. Optical study on poly(methyl methacrylate)/poly(vinyl acetate) blends. Int. J. Photoenergy 2009, 2009, 1–7. [Google Scholar] [CrossRef]
- Wróblewska, A.; Dużyńska, A.; Judek, J.; Stobiński, L.; Zerańska, K.; Gertych, A.P.; Zdrojek, M. Statistical analysis of the reduction process of graphene oxide probed by Raman spectroscopy mapping. J. Phys. Condens. Matter 2017, 29, 475201. [Google Scholar] [CrossRef] [PubMed]
- Lesiak, P.; Szelg, M.; Budaszewski, D.; Plaga, R.; Mileńko, K.; Rajan, G.; Semenova, Y.; Farrell, G.; Boczkowska, A.; Domański, A.; et al. Influence of lamination process on optical fiber sensors embedded in composite material. Meas. J. Int. Meas. Confed. 2012, 45, 2275–2280. [Google Scholar] [CrossRef]
- Nikoniuk, D.; Bednarska, K.; Sienkiewicz, M.; Krzesiński, G.; Olszyna, M.; Dähne, L.; Woliński, T.R.; Lesiak, P. Polymer Fibers Covered by Soft Multilayered Films for Sensing Applications in Composite Materials. Sensors 2019, 19, 4052. [Google Scholar] [CrossRef] [Green Version]
- Durmus, H.; Safak, H.; Akbas, H.Z.; Ahmetli, G. Optical properties of modified epoxy resin with various oxime derivatives in the UV-VIS spectral region. J. Appl. Polym. Sci. 2011, 120, 1490–1495. [Google Scholar] [CrossRef]
- Attard, G.; Barnes, C. Surfaces, Oxford Chemistry Primers; Oxford Science Publications Oxford: Oxford, UK, 1998. [Google Scholar]
Sample Type | GO | GO + PMMA |
---|---|---|
Light intensity [mW/cm2] | 160 | 500 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesiak, P.; Bednarska, K.; Małkowski, K.; Kozłowski, Ł.; Wróblewska, A.; Sobotka, P.; Dydek, K.; Boczkowska, A.; Osuch, T.; Anuszkiewicz, A.; et al. UV Sensor Based on Fiber Bragg Grating Covered with Graphene Oxide Embedded in Composite Materials. Sensors 2020, 20, 5468. https://doi.org/10.3390/s20195468
Lesiak P, Bednarska K, Małkowski K, Kozłowski Ł, Wróblewska A, Sobotka P, Dydek K, Boczkowska A, Osuch T, Anuszkiewicz A, et al. UV Sensor Based on Fiber Bragg Grating Covered with Graphene Oxide Embedded in Composite Materials. Sensors. 2020; 20(19):5468. https://doi.org/10.3390/s20195468
Chicago/Turabian StyleLesiak, Piotr, Karolina Bednarska, Krzysztof Małkowski, Łukasz Kozłowski, Anna Wróblewska, Piotr Sobotka, Kamil Dydek, Anna Boczkowska, Tomasz Osuch, Alicja Anuszkiewicz, and et al. 2020. "UV Sensor Based on Fiber Bragg Grating Covered with Graphene Oxide Embedded in Composite Materials" Sensors 20, no. 19: 5468. https://doi.org/10.3390/s20195468
APA StyleLesiak, P., Bednarska, K., Małkowski, K., Kozłowski, Ł., Wróblewska, A., Sobotka, P., Dydek, K., Boczkowska, A., Osuch, T., Anuszkiewicz, A., Lewoczko-Adamczyk, W., Schröder, H., & Woliński, T. R. (2020). UV Sensor Based on Fiber Bragg Grating Covered with Graphene Oxide Embedded in Composite Materials. Sensors, 20(19), 5468. https://doi.org/10.3390/s20195468