Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography
Abstract
:1. Introduction
2. Methods
2.1. Data Collection and Preprocessing
2.1.1. EMG Data Collection
2.1.2. ECG Interference
2.1.3. Synthetic Trunk EMG and Preprocessing
2.2. ECG Interference Removal
2.2.1. Gating
2.2.2. High-Pass Filtering
2.2.3. Template Subtraction
2.2.4. Wavelet Transform
2.2.5. Adaptive Filtering
2.2.6. Blind Source Separation
2.3. Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethical Statement
Abbreviations
EMG | Electromyogram |
ECG | Electrocardiogram |
ARV | Average rectified value |
MF | Mean frequency |
GT | Gating |
HP | High-pass filtering |
TS | Template subtraction |
AF | Adaptive filtering |
BSS | Blind source separation |
ICA | Independent component analysis |
MMC | Máxima Medical Center |
MVC | Maximum voluntary contraction |
SNR | Signal-to-noise ratio |
FIR | Finite impulse response |
RMSE | Root mean square error |
NLMS | Normalized least mean square |
STFT | Short-time Fourier transform |
References
- Tang, X.; Zhang, X.; Gao, X.; Chen, X.; Zhou, P. A Novel Interpretation of Sample Entropy in Surface Electromyographic Examination of Complex Neuromuscular Alternations in Subacute and Chronic Stroke. IEEE Trans. Neural. Syst. Rehabil. Eng. 2018, 26, 1878–1888. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Yu, H.; Cang, S. Impact of Load Variation on Joint Angle Estimation From Surface EMG Signals. IEEE Trans. Neural. Syst. Rehabil. Eng. 2016, 12, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Staudenmann, D.; Daffertshofer, A.; Stegeman, D.F.; van Dieen, J.H. Improving EMG-based muscle force estimation by using a high-density EMG grid and principal component analysis. IEEE Trans. Biomed. Eng. 2006, 4, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, P. A Novel Myoelectric Pattern Recognition Strategy for Hand Function Restoration after Incomplete Cervical Spinal Cord Injury. IEEE Trans. Neural. Syst. Rehabil. Eng. 2013, 21, 96–103. [Google Scholar] [CrossRef]
- Farina, D.; Jiang, N.; Rehbaum, H.; Holobar, A.; Graimann, B.; Dietl, H.; Aszmann, O.C. The Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges. IEEE Trans. Neural. Syst. Rehabil. Eng. 2014, 22, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Thakor, N.V.; Matsuno, F. Hand and Wrist Movement Control of Myoelectric Prosthesis Based on Synergy. IEEE Trans. Hum. Mach. Syst. 2015, 45, 74–83. [Google Scholar] [CrossRef]
- Rissén, D.; Melin, B.; Sandsjö, L.; Dohns, I.; Lundberg, U. Surface EMG and psychophysiological stress reactions in women during repetitive work. Eur. J. Appl. Physiol. 2000, 83, 215–222. [Google Scholar] [CrossRef]
- Maarsingh, E.J.; van Eykern, L.A.; Sprikkelman, A.B.; Hoekstra, M.O.; van Aalderen, W.M. Respiratory muscle activity measured with a noninvasive EMG technique: Technical aspects and reproducibility. J. Appl. Physiol. 2015, 88, 1955–1961. [Google Scholar] [CrossRef] [Green Version]
- Conradsen, I.; Wolf, P.; Sams, T.; Sorensen, H.B.; Beniczky, S. Patterns of muscle activation during generalized tonic and tonic-clonic epileptic seizures. Epilepsia 2011, 52, 2125–2132. [Google Scholar] [CrossRef]
- Zhou, P.; Kuiken, T.A. Eliminating cardiac contamination from myoelectric control signals developed by targeted muscle reinnervation. Physiol. Meas. 2006, 52, 1311–1327. [Google Scholar] [CrossRef]
- Sörnmo, L.; Laguna, P. Chapter 5—The Electromyogram. In Bioelectrical Signal Processing in Cardiac and Neurological Applications; Academic Press: New York, NY, USA, 2005; pp. 337–410. [Google Scholar]
- Sörnmo, L.; Laguna, P. Chapter 6—The Electrocardiogram—A Brief Background. In Bioelectrical Signal Processing in Cardiac and Neurological Applications; Academic Press: New York, NY, USA, 2005; pp. 411–452. [Google Scholar]
- Kuiken, T.A.; Dumanian, G.A.; Lipschutz, R.D.; Miller, L.A.; Stubblefield, K.A. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 2004, 28, 245–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartolo, A.; Roberts, C.; Dzwonczyk, R.R.; Goldman, E. Analysis of diaphragm EMG signals: Comparison of gating vs. subtraction for removal of ECG contamination. J. Appl. Physiol. 1996, 80, 1898–1902. [Google Scholar] [CrossRef] [PubMed]
- Redfern, M.S.; Hughes, R.E.; Chaffin, D.B. High-pass filtering to remove electrocardiographic interference from torso EMG recordings. Clin. Biomech. 1993, 8, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, A.; Dzwonczyk, R.; Roberts, C.; Goldman, E. Description and validation of a technique for the removal of ECG contamination from diaphragmatic EMG signal. Med. Biol. Eng. Comput. 1996, 34, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.; Yeung, L.F.; Yang, Z. A wavelet-based adaptive filter for removing ECG interference in EMGdi signals. J. Electromyogr. Kinesiol. 2010, 20, 542–549. [Google Scholar] [CrossRef]
- Marque, C.; Bisch, C.; Dantas, R.; Elayoubi, S.; Brosse, V.; Pérot, C. Adaptive filtering for ECG rejection from surface EMG recordings. J. Electromyogr. Kinesiol. 2005, 15, 310–345. [Google Scholar] [CrossRef]
- Costa Junior, J.D.; Ferreira, D.D.; Nadal, J.; Miranda de Sá, A.M.F.L. Reducing electrocardiographic artifacts from electromyogram signals with independent component analysis. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4598–4601. [Google Scholar]
- Drake, J.D.M.; Callaghan, J.P. Elimination of electrocardiogram contamination from electromyogram signals: An evaluation of currently used removal techniques. J. Electromyogr. Kinesiol. 2006, 16, 175–187. [Google Scholar] [CrossRef]
- Willigenburg, N.W.; Daffertshofer, A.; Kingma, I.; van Dieën, J.H. Removing ECG contamination from EMG recordings: A comparison of ICA-based and other filtering procedures. J. Electromyogr. Kinesiol. 2012, 22, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Thongpanja, S.; Phinyomark, A.; Quaine, F.; Laurillau, Y.; Limsakul, C.; Phukpattaranont, P. Probability Density Functions of Stationary Surface EMG Signals in Noisy Environments. IEEE Trans. Instrum. Meas. 2016, 65, 1547–1557. [Google Scholar] [CrossRef]
- Xu, L.; Rabotti, C.; Mischi, M. Analysis of Vibration Exercise at Varying Frequencies by Different Fatigue Estimators. IEEE Trans. Neural. Syst. Rehabil. Eng. 2016, 24, 1284–1293. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Rabotti, C.; Mischi, M. Towards Real-Time Estimation of Muscle-Fiber Conduction Velocity Using Delay-Locked Loop. IEEE Trans. Neural. Syst. Rehabil. Eng. 2017, 25, 1453–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Negro, F.; Xu, Y.; Rabotti, C.; Schep, G.; Farina, D.; Mischi, M. Does vibration superimposed on low-level isometric contraction alter motor unit recruitment strategy? J. Neural. Eng. 2017, 15, 066001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2000, 101, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooijakkers, M.J.; Rabotti, C.; Oei, S.G.; Mischi, M. Low-complexity R-peak detection for ambulatory fetal monitoring. Physiol. Meas. 2012, 33, 1135–1150. [Google Scholar] [CrossRef]
- Martens, S.M.M.; Rabotti, C.; Oei, S.G.; Mischi, M.; Sluijter, R.J. A robust fetal ECG detection method for abdominal recordings. Physiol. Meas. 2007, 28, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern. Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Thakor, N.V.; Zhu, Y.S. Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 1991, 38, 785–794. [Google Scholar] [CrossRef]
- Xu, L.; Rabotti, C.; Mischi, M. Characterization of a novel instrument for vibration exercise. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; Volume 21, pp. 2760–2763. [Google Scholar]
- Xu, L.; Rooijakkers, M.J.; Rabotti, C.; Peuscher, J.; Mischi, M. Use of power-line interference for adaptive motion artifact removal in biopotential measurements. Physiol. Meas. 2015, 37, 25–40. [Google Scholar] [CrossRef]
- Xu, L.; Rabotti, C.; Zhang, Y.; Ouzounov, S.; Harpe, P.J.A.; Mischi, M. Motion-Artifact Reduction in Capacitive Heart-Rate Measurements by Adaptive Filtering. IEEE Trans Instrum Meas 2018, 68, 4085–4093. [Google Scholar] [CrossRef]
- Widrow, B.; Glover, J.R.; McCool, J.M. Adaptive noise canceling: Principles and applications. Proc. IEEE 1975, 63, 1692–1716. [Google Scholar] [CrossRef]
- Mak, J.N.F.; Hu, Y.; Luk, K.D.K. An automated ECG-artifact removal method for trunk muscle surface EMG recordings. Med. Eng. Phys. 2010, 32, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural. Netw. 1999, 10, 626–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
20 [Hz] | 30 [Hz] | 40 [Hz] | 50 [Hz] | 60 [Hz] | |
---|---|---|---|---|---|
ARV [V] | ± | ± | 5.6 ± 1.8 | 8.4 ± 2.0 | 13.4 ± 2.8 |
MF [Hz] | 18.9 ± 4.4 | 6.1 ± 1.9 | 13.0 ± 1.5 | 24.8 ± 2.6 | 38.9 ± 3.0 |
Data with Healthy ECG | Data with Dysrhythmia ECG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MD | LA | UA | MD | LA | UA | ||||||
GT | 0.49 | 0.37 | 0.81 | 0.23 | 1.23 | 0.55 | 0.41 | 0.91 | 0.26 | 1.43 | |
HP | 0.11 | 0.06 | 0.25 | 0.00 | 0.42 | 0.14 | 0.08 | 0.19 | 0.00 | 0.29 | |
TS | 0.12 | 0.08 | 0.17 | 0.01 | 0.27 | 0.14 | 0.08 | 0.18 | 0.01 | 0.29 | |
WT | 0.30 | 0.16 | 0.43 | 0.01 | 0.75 | 0.16 | 0.10 | 0.27 | 0.02 | 0.48 | |
AF | 0.12 | 0.05 | 0.32 | 0.00 | 0.58 | 0.18 | 0.06 | 0.42 | 0.00 | 0.93 | |
ICA | 0.10 | 0.05 | 0.18 | 0.01 | 0.35 | 0.10 | 0.05 | 0.16 | 0.00 | 0.32 | |
ARV [V] | GT | 6.6 | 5.1 | 8.3 | 2.8 | 12.5 | 5.4 | 3.6 | 11.2 | 1.5 | 19.5 |
HP | 7.2 | 4.0 | 11.1 | 1.8 | 20.6 | 4.0 | 2.4 | 7.2 | 1.1 | 11.4 | |
TS | 2.3 | 1.9 | 3.0 | 1.2 | 4.0 | 3.8 | 2.4 | 7.8 | 1.7 | 15.8 | |
WT | 15.8 | 13.0 | 20.5 | 7.5 | 28.2 | 11.0 | 6.2 | 16.1 | 3.5 | 29.4 | |
AF | 7.2 | 5.4 | 11.9 | 2.3 | 20.4 | 7.3 | 4.6 | 15.8 | 2.3 | 32.3 | |
ICA | 3.3 | 2.4 | 5.1 | 1.2 | 7.8 | 4.1 | 2.6 | 5.7 | 0.7 | 8.4 | |
MF | GT | 5.7 | 3.6 | 10.0 | 1.7 | 18.5 | 6.4 | 4.0 | 10.7 | 1.6 | 19.0 |
HP | 5.2 | 4.4 | 6.8 | 3.7 | 9.3 | 5.7 | 4.6 | 6.8 | 2.9 | 8.4 | |
TS | 2.0 | 1.7 | 2.5 | 1.1 | 3.6 | 3.0 | 2.2 | 6.5 | 1.3 | 12.7 | |
WT | 6.8 | 5.8 | 8.1 | 4.8 | 11.1 | 8.5 | 7.1 | 11.2 | 4.3 | 17.0 | |
AF | 5.0 | 3.7 | 6.1 | 1.7 | 9.6 | 5.4 | 3.9 | 8.4 | 2.0 | 15.1 | |
ICA | 4.7 | 2.8 | 8.4 | 1.1 | 16.7 | 6.1 | 3.2 | 9.2 | 1.5 | 16.2 |
GT | HP | TS | WT | AF | ICA |
---|---|---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Peri, E.; Vullings, R.; Rabotti, C.; Van Dijk, J.P.; Mischi, M. Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography. Sensors 2020, 20, 4890. https://doi.org/10.3390/s20174890
Xu L, Peri E, Vullings R, Rabotti C, Van Dijk JP, Mischi M. Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography. Sensors. 2020; 20(17):4890. https://doi.org/10.3390/s20174890
Chicago/Turabian StyleXu, Lin, Elisabetta Peri, Rik Vullings, Chiara Rabotti, Johannes P. Van Dijk, and Massimo Mischi. 2020. "Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography" Sensors 20, no. 17: 4890. https://doi.org/10.3390/s20174890
APA StyleXu, L., Peri, E., Vullings, R., Rabotti, C., Van Dijk, J. P., & Mischi, M. (2020). Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography. Sensors, 20(17), 4890. https://doi.org/10.3390/s20174890