Active Learning Plus Deep Learning Can Establish Cost-Effective and Robust Model for Multichannel Image: A Case on Hyperspectral Image Classification
Abstract
:1. Introduction
1.1. Related Work
1.1.1. Active Learning
1.1.2. Apply Deep Learning on Multichannel Image
1.1.3. Using Active Learning and Deep Learning in Combination
1.2. Contribution of this Work
2. Method
2.1. Active Learning Selection Criteria
2.2. Principle of Proposed Framework
Algorithm 1 Active deep learning for multichannel images |
Input: : Training set. : Testing set. K: Number of manually annotated samples in each epoch. : Initial percentage of pseudo labeled images from the unlabeled images. : Stride length of p. : Manually labeled image set. : Pseudo labeled image set. : Unlabeled image set. Output: : Fine-tuned CNN model. : Manually labeled images. Initialize: Randomly select K images from , and add them to . , . Fine-tune the CNN model and get .
|
2.3. Taking Full Advantage of Images Generated by Data Augmentation
Algorithm 2 Active deep learning for multichannel images using image pool |
Input: : Training set. : Testing set. K: Number of manually annotated samples in each epoch. : Initial percentage of pseudo labeled images from the unlabeled images. : Stride length of p. : Manually labeled image set. : Pseudo labeled image set. : Unlabeled image set. : Image pool. Output: : Fine-tuned CNN model. : Manually labeled images. Initialize: Randomly select K images from , and add them to . , , . Fine-tune the CNN model and get .
|
3. Result and Disscussion
3.1. Feasibility and Advantage of Using Deep Learning for Hyperspectral Image
3.2. Dataset Description
3.3. Data Pre-Processing
3.4. Adjusting the Structure of CNN
3.5. Performance Validation
4. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Krasin, I.; Duerig, T.; Alldrin, N.; Ferrari, V.; Abu-El-Haija, S.; Kuznetsova, A.; Rom, H.; Uijlings, J.; Popov, S.; Veit, A.; et al. OpenImages: A Public Dataset for Large-Scale Multi-Label and Multi-Class Image Classification. 2017. Available online: https://github.com/openimages (accessed on 5 July 2020).
- Everingham, M.; Eslami, S.A.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar]
- Settles, B. Active Learning Literature Survey; Computer Sciences Technical Report 1648; University of Wisconsin-Madison: Madison, WI, USA, 2009. [Google Scholar]
- Lewis, D.D.; Gale, W.A. A sequential algorithm for training text classifiers. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 3–6 July 1994; Springer: New York, NY, USA, 1994; pp. 3–12. [Google Scholar]
- Lewis, D.D.; Catlett, J. Heterogeneous uncertainty sampling for supervised learning. In Machine Learning Proceedings 1994; Elsevier: Amsterdam, The Netherlands, 1994; pp. 148–156. [Google Scholar]
- Scheffer, T.; Decomain, C.; Wrobel, S. Active hidden markov models for information extraction. In International Symposium on Intelligent Data Analysis; Springer: Berlin/Heidelberg, Germany, 2001; pp. 309–318. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Seung, H.S.; Opper, M.; Sompolinsky, H. Query by committee. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 287–294. [Google Scholar]
- Mamitsuka, N.; Abe, H. Query learning strategies using boosting and bagging. In Machine Learning: Proceedings of the Fifteenth International Conference (ICML98), Madison, WI, USA, 24–27 July 1998; Morgan Kaufmann Pub.: San Francisco, CA, USA, 1998; Volume 1. [Google Scholar]
- Huo, L.Z.; Tang, P. A batch-mode active learning algorithm using region-partitioning diversity for SVM classifier. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1036–1046. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [Google Scholar] [CrossRef] [Green Version]
- Pasolli, E.; Melgani, F.; Alajlan, N.; Bazi, Y. Active learning methods for biophysical parameter estimation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4071–4084. [Google Scholar] [CrossRef]
- Md Noor, S.S.; Ren, J.; Marshall, S.; Michael, K. Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries. Sensors 2017, 17, 2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cen, H.; He, Y.; Lu, R. Hyperspectral imaging-based surface and internal defects detection of cucumber via stacked sparse auto-encoder and convolutional neural network. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016; American Society of Agricultural and Biological Engineers: St Joseph, MI, USA, 2016; p. 1. [Google Scholar]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Wang, D.; Shang, Y. A new active labeling method for deep learning. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 112–119. [Google Scholar]
- Wang, K.; Zhang, D.; Li, Y.; Zhang, R.; Lin, L. Cost-effective active learning for deep image classification. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 2591–2600. [Google Scholar] [CrossRef] [Green Version]
- Sener, O.; Savarese, S. Active Learning for Convolutional Neural Networks: A Core-Set Approach. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Zhou, S.; Chen, Q.; Wang, X. Active deep learning method for semi-supervised sentiment classification. Neurocomputing 2013, 120, 536–546. [Google Scholar] [CrossRef]
- Lin, L.; Wang, K.; Meng, D.; Zuo, W.; Zhang, L. Active self-paced learning for cost-effective and progressive face identification. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Shin, J.; Zhang, L.; Gurudu, S.; Gotway, M.; Liang, J. Fine-tuning convolutional neural networks for biomedical image analysis: Actively and incrementally. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7340–7349. [Google Scholar]
- Liu, P.; Zhang, H.; Eom, K.B. Active deep learning for classification of hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 712–724. [Google Scholar] [CrossRef] [Green Version]
- Al Rahhal, M.M.; Bazi, Y.; AlHichri, H.; Alajlan, N.; Melgani, F.; Yager, R.R. Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 2016, 345, 340–354. [Google Scholar] [CrossRef]
- Zhang, M.; Li, C. Blueberry bruise detection using hyperspectral transmittance imaging. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016; American Society of Agricultural and Biological Engineers: St Joseph, MI, USA, 2016; p. 1. [Google Scholar]
- Hu, M.H.; Dong, Q.L.; Liu, B.L. Classification and characterization of blueberry mechanical damage with time evolution using reflectance, transmittance and interactance imaging spectroscopy. Comput. Electron. Agric. 2016, 122, 19–28. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, M.; Zhai, G. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data. Sensors 2018, 18, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.H.; Dong, Q.L.; Liu, B.L.; Opara, U.L.; Chen, L. Estimating blueberry mechanical properties based on random frog selected hyperspectral data. Postharvest Biol. Technol. 2015, 106, 1–10. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
Method | Algorithm 1 | Algorithm 2 | |||||
---|---|---|---|---|---|---|---|
LC | MS | EN | LC | MS | EN | ||
Baseline | Percentage 1 | 85.7% | 86.8% | 61.8% | 33.6% | 36.4% | 34.5% |
Accuracy | 0.946 | ||||||
Peak | Percentage 1 | 89.5% | 89.2% | 73.5% | 38.1% | 42.6% | 41.5% |
Accuracy | 0.973 | 0.973 | 0.991 | 0.964 | 0.973 | 0.991 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Wang, Z.; Hu, M.; Zhai, G. Active Learning Plus Deep Learning Can Establish Cost-Effective and Robust Model for Multichannel Image: A Case on Hyperspectral Image Classification. Sensors 2020, 20, 4975. https://doi.org/10.3390/s20174975
Shi F, Wang Z, Hu M, Zhai G. Active Learning Plus Deep Learning Can Establish Cost-Effective and Robust Model for Multichannel Image: A Case on Hyperspectral Image Classification. Sensors. 2020; 20(17):4975. https://doi.org/10.3390/s20174975
Chicago/Turabian StyleShi, Fangyu, Zhaodi Wang, Menghan Hu, and Guangtao Zhai. 2020. "Active Learning Plus Deep Learning Can Establish Cost-Effective and Robust Model for Multichannel Image: A Case on Hyperspectral Image Classification" Sensors 20, no. 17: 4975. https://doi.org/10.3390/s20174975
APA StyleShi, F., Wang, Z., Hu, M., & Zhai, G. (2020). Active Learning Plus Deep Learning Can Establish Cost-Effective and Robust Model for Multichannel Image: A Case on Hyperspectral Image Classification. Sensors, 20(17), 4975. https://doi.org/10.3390/s20174975