Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Extraction
2.3. UHPLC-MWD-UHR-TOF-MS Method
2.4. pH-Differential Method
2.5. NIR Measurements
2.6. Method Validation
2.7. Spectra Processing and Multivariate Data Analysis
2.8. Theoretical Simulation of NIR Absorption Bands
3. Results and Discussion
3.1. pH-Differential-Method Measurements
3.2. UHPLC-MWD-UHR-TOF-MS Measurements
3.3. NIR Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TAC | Total anthocyanin content |
HPLC | High performance liquid chromatography |
MS | Mass spectrometry |
HCN | Hydrogen cyanide |
UHPLC | Ultra high performance liquid chromatography |
MWD | Multiple wavelength detector |
TOF | Time of flight |
NIR | Near-infrared reflectance |
RSD | Relative standard deviation |
PLSR | Partial least squares regression |
RMSECV | Root mean squared error cross validation |
RMSEC | Root mean squared error calibration |
SNV | Standard normal variation |
References
- Hamid, A.A.; Aiyelaagbe, O.O.; Usman, L.A.; Armeen, O.M.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. Afr. J. Pure Appl. Chem. 2010, 4, 142–151. [Google Scholar]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J.; García-Viguera, C. Anthocyanin-Based Natural Colorants: A New Source of Antiradical Activity for Foodstuff. J. Agric. Food Chem. 2000, 48, 1588–1592. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Rennaker, C.; Wrolstad, R.E. Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chem. 2008, 110, 782–786. [Google Scholar] [CrossRef]
- Wang, L.S.; Stoner, G.D. Anthocyanins and their role in cancer prevention. Cancer Lett. 2008, 269, 281–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, R.L.; Wu, X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res. 2006, 40, 1014–1028. [Google Scholar] [CrossRef] [PubMed]
- Zaukuu, J.L.Z.; Soós, J.; Bodor, Z.; Felföldi, J.; Magyar, I.; Kovacs, Z. Authentication of Tokaj Wine (Hungaricum) with the Electronic Tongue and Near Infrared Spectroscopy. J. Food Sci. 2019, 84, 3437–3444. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Tosun, M.; Akbulut, M. Physico-chemical characteristics of some wild grown European elderberry (Sambucus nigra L.) genotypes. Phcog. Mag. 2009, 20, 320–323. [Google Scholar] [CrossRef]
- Jungmin, L.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar]
- Clara, D.; Pezzei, C.K.; Schönbichler, S.A.; Popp, M.; Krolitzek, J.; Bonn, G.K.; Huck, C.W. Comparison of near-infrared diffuse reflectance (NIR) and attenuated-total-reflectance mid-infrared (ATR-IR) spectroscopic determination of the antioxidant capacity of Sambuci flos with classic wet chemical methods (assays). Anal. Methods 2016, 8, 97–104. [Google Scholar] [CrossRef]
- Csorba, V.; Fodor, M.; Kovács, S.; Tóth, M. Potential of fourier transformed near-infrared (FT-NIR) spectroscopy for rapid analysis of elderberry (Sambucus nigra L.) fruits. Czech J. Food Sci. 2019, 37, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Németh, D.; Balazs, G.; Daood, H.G.; Kovacs, Z.; Bodor, Z.; Zaukuu, J.Z.; Szentpeteri, V.; Kokai, Z.; Kappel, N. Standard Analytical Methods, Sensory Evaluation, NIRS and Electronic Tongue for Sensing Taste Attributes of Different Melon Varieties. Sensors 2019, 19, 5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukacs, M.; Bazar, G.; Pollner, B.; Henn, R.; Kirchler, C.G.; Huc, C.W.; Kovacs, Z. Near infrared spectroscopy as an alternative quick method for simultaneous detection of multiple adulterants in whey protein-based sports supplement. Food Control 2018, 94, 331–340. [Google Scholar] [CrossRef]
- Loew, D.; Rietbrock, N. Phytopharmaka IV: Forschung und klinische Anwendung; Springer: Berlin, Germany, 1998; Available online: https://www.springer.com/de/book/9783642959981 (accessed on 1 September 2020).
- Mandal, S.C. Essentials of Botanical Extraction: Principles and Applications; ScienceDirect: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Holst, L.; Havnen, G.C.; Nordeng, H. Echinacea and elderberry—should they be used against upper respiratory tract infections during pregnancy? Front. Pharmacol. 2014, 5, 24624087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambuci Flos. Available online: https://www.ema.europa.eu/en/medicines/herbal/sambuci-flos (accessed on 1 June 2020).
- Brønnum-Hansen, K.; Hansen, S.H. High-performance liquid chromatographic separation of anthocyanins of Sambucus nigra L. J. Chromatogr. 1983, 262, 385–392. [Google Scholar] [CrossRef]
- Roschek, B.; Fink, R.; McMichael, M.; Li, D.; Alberte, R.S. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry 2009, 70, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food. Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Kellens, J.T.C.; Allen, A.K.; Van Damme, E.J.M. Isolation and characterization of a seed lectin from elderberry (Sambucus nigra L.) and its relationship to the bark lectins. Carbohydr. Res. 1991, 213, 7–17. [Google Scholar] [CrossRef]
- Girbes, T.; Torre, C.D.; Iglesias, R.; Ferreras, J.M.; Mendez, E. RIP for viruses. Nature 1996, 379, 777–778. [Google Scholar] [CrossRef]
- Mach, L.; Scherf, W.; Ammann, M.; Poetsch, J.; Bertsch, W.; März, L.; Glössl, J. Purification and partial characterization of a novel lectin from elder (Sambucus nigra L.) fruit. Biochem. J. 1991, 278, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, E.J.; Roy, S.; Barre, A.; Rougé, P.; Van Leuven, F.; Peumans, W.J. The major elderberry (Sambucus nigra) fruit protein is a lectin derived from a truncated type 2 ribosome-inactivating protein. Plant J. 1997, 12, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Girbés, T.; Citores, L.; de Benito, F.M.; Inglesias, R.; Ferreras, J.M. A nontoxic two-chain ribosome-inactivating protein co-exists with a structure-related monomeric lectin (SNA III) in elder (Sambucus nigra) fruits. Biochem. J. 1996, 315, 343. [Google Scholar] [CrossRef] [PubMed]
- Frster-Waldl, E.; Marchetti, M.; Schll, I.; Focke, M.; Jensen-Jarolim, E. Type i allergy to elderberry (Sambucus nigra) is elicited by a 33.2 kda allergen with significant homology to ribosomal inactivating proteins. Clin. Exp. Allergy 2003, 33, 1703–1710. [Google Scholar] [CrossRef] [PubMed]
- Souci, S.W.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables 1981/82; Wissenschaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 1981; pp. 23–1352. [Google Scholar]
- Vulic, J.J.; Vračar, L.O.; Sumic, Z.M. Chemical characteristics of cultivated elderberry fruit. Apteff 2008, 39, 1–212. [Google Scholar] [CrossRef]
- Speijers, G.; Glycosides, C. World Health Organization. JECFA. 1993. Available online: http://www.inchem.org/documents/jecfa/jecmono/v30je18.htm (accessed on 1 September 2020).
- Jensen, S.R.; Nielsen, B.J. Cyanogenic glucosides in Sambucus nigra L. Acta Chem. Scand. 1973, 27, 2261–2262. [Google Scholar] [CrossRef] [PubMed]
- Dellagreca, M.; Fiorentino, A.; Monaco, P. Cyanogenic Glycosides from Sambucus nigra. Nat. Prod. Lett. 2000, 14, 175–182. [Google Scholar] [CrossRef]
- Atkinson, M.D.; Atkinson, E. Sambucus nigra L. J. Ecol. 2002, 90, 895–923. [Google Scholar] [CrossRef]
- Fearn, T. Chemometrics: An Enabling Tool for NIR. Nir News 2013, 16, 17–19. [Google Scholar] [CrossRef]
- Fearn, T. A look at some standard pre-treatments for spectra. Nir News 2013, 10, 10. [Google Scholar] [CrossRef]
- Fearn, T. Chemometric Space Are two pretreatments better than one? NIR News 2003, 14, 9–11. [Google Scholar]
- Kessler, W. Multivariate Datenanalyse für die Pahrmazeutische-, Bio- und Prozessanalytik; Wiley Online Library: Hoboken, NJ, USA, 2006; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527610037 (accessed on 1 September 2020).
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Frisch, M.J.T.; Frisch, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09. Available online: https://gaussian.com/g09citation/ (accessed on 1 June 2020).
- Beć, K.B.H.; Huck, C.W. Breakthrough potential in near-infrared spectroscopy: Spectra simulation. A review of recent developments. Front. Chem. 2019, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozgen, M.; Scheerens, J.C.; Reese, R.N.; Miller, R.A. Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Pharm. Mag. 2010, 6, 198–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlynarczyk, K.; Walkowiak-Tomczak, D.; Staniek, H.; Kidon, M.; Lysiak, G.P. The Content of Selected Minerals, Bioactive Compounds, and the Antioxidant Properties of the Flowers and Fruit of Selected Cultivars and Wildly Growing Plants of Sambucus nigra L. Molecules 2020, 25, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Workman, J.J.; Weyer, L. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2012; Available online: https://www.routledge.com/Practical-Guide-and-Spectral-Atlas-for-Interpretive-Near-Infrared-Spectroscopy/Workman-Jr-Weyer/p/book/9781439875254 (accessed on 1 September 2020).
- Kirchler, C.G.; Pezzei, C.K.; Beć, K.B.; Mayr, S.; Ishigaki, M.; Ozaki, Y.; Huck, C.W. Critical evaluation of spectral information of benchtop vs. portable near-infrared spectrometers: Quantum chemistry and two-dimensional correlation spectroscopy for a better understanding of PLS regression models of the rosmarinic acid content in Rosmarini folium. Analyst 2017, 142, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Beć, K.B.; Grabska, J.; Kirchler, C.G.; Huck, C.W. NIR spectra simulation of thymol for better understanding of the spectra forming factors, phase and concentration effects and PLS regression features. J. Mol. Liq. 2018, 268, 895–902. [Google Scholar] [CrossRef]
- Beć, K.B.; Futami, Y.; Wójcik, M.J.; Ozaki, Y. A spectroscopic and theoretical study in the near-infrared region of low concentration aliphatic alcohols. Phys. Chem. 2016, 18, 13666–13682. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W.; Czarnecki, M.A. Effect of conformational isomerism on NIR spectra of ethanol isotopologues. Spectroscopic and anharmonic DFT study. J. Mol. Liq. 2020, 310, 113271. [Google Scholar] [CrossRef]
- Czarnecki, M.A.; Morisawa, Y.; Futami, Y.; Ozaki, Y. Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy. Chem. Rev. 2015, 115, 9707–9744. [Google Scholar] [CrossRef]
- Bronnum-Hansen, K.; Jacobsen, F.; Flink, J.M. Anthocyanin colourants from elderberry (Sambucus nigra L.). 1. Process considerations for production od the liquid extract. J. Food Technol. 1985, 20, 703–711. [Google Scholar] [CrossRef]
- Pogorzelski, E. Formation of cyanide as a product of decomposition of cyanogenic glucosides in the treatment of elderberry fruit (Sambucus nigra). J. Sci. Food Agric. 1982, 33, 496–498. [Google Scholar] [CrossRef]
Spectral Range | 12,500–4000 cm−1 |
---|---|
Resolution | 8 cm−1 |
Spectra per sample | 9 |
Scans per sample | 64 |
Data points | 1501 |
Light source | Tungsten-halogen lamp |
Laser type | 12 VDC HeNe, up to 633 nm |
Monochromator/ Wavelength selection technique | FT-NIR-polarization interferometer with TeO2 wedges |
Detector | InGaAs |
Measuring mode | Diffuse reflection |
Dimensions | 350 × 250 × 450 mm (w × h × d) |
Measuring cell | NIRFlex solids with spinner add-on |
Sample | Total Anthocyanin Content Represented as Cy-3-glu (mg/kg) | RSD (%) |
---|---|---|
S1 | 2428.68 | 18.5 |
S3 | 3885.30 | 12.9 |
S6 | 1716.63 | 26.8 |
S7 | 3121.65 | 33.9 |
S9 | 3264.08 | 30.1 |
S10 | 1191.33 | 19.2 |
S11 | 4342.01 | 23.7 |
S12 | 898.39 | 24.1 |
S13 | 2034.47 | 12.9 |
S14 | 1190.72 | 18.9 |
S15 | 2879.10 | 17.4 |
S16 | 1452.55 | 28.3 |
S17 | 3443.98 | 33.4 |
S18 | 1820.62 | 33.1 |
S19 | 1089.76 | 21.2 |
S20 | 876.83 | 23.7 |
S21 | 632.87 | 24.1 |
S22 | 1330.89 | 12.9 |
S23 | 1132.08 | 11.5 |
S24 | 656.74 | 12.9 |
S25 | 624.12 | 11.5 |
S26 | 1099.06 | 12.7 |
S27 | 1218.08 | 12.2 |
S28 | 1447.48 | 4.2 |
S29 | 1380.31 | 20.0 |
S30 | 1908.79 | 15.5 |
S31 | 1851.28 | 11.9 |
R1 | 168.10 | 25.8 |
R2 | 121.07 | 33.9 |
R3 | 235.73 | 30.1 |
R4 | 276.64 | 13.2 |
R5 | 172.00 | 20.7 |
R6 | 206.23 | 25.1 |
R7 | 240.74 | 17.9 |
Sample | Total Anthocyanin Content (mg/kg) | RSD (%) |
---|---|---|
S1 | 4491.57 | 2 |
S3 | 6866.07 | 4 |
S6 | 2421.38 | 3 |
S7 | 5718.50 | 5 |
S9 | 5563.06 | 6 |
S10 | 2388.63 | 4 |
S11 | 8311.39 | 3 |
S12 | 1154.70 | 6 |
S13 | 2824.30 | 5 |
S14 | 1560.03 | 1 |
S15 | 4277.62 | 3 |
S16 | 2136.57 | 6 |
S17 | 4211.50 | 5 |
S18 | 2644.24 | 5 |
S19 | 1366.76 | 4 |
S20 | 1196.72 | 5 |
S21 | 823.35 | 1 |
S22 | 1710.49 | 2 |
S23 | 1399.16 | 3 |
S24 | 783.02 | 1 |
S25 | 499.43 | 6 |
S26 | 997.69 | 5 |
S27 | 674.17 | 2 |
S28 | 1025.82 | 1 |
S29 | 1581.02 | 1 |
S30 | 1289.57 | 2 |
S31 | 776.00 | 4 |
R1 | <LOQ | |
R2 | <LOQ | |
R3 | <LOQ | |
R4 | <LOQ | |
R5 | <LOQ | |
R6 | <LOQ | |
R7 | <LOQ |
Wavenumber [cm—1] | Assignment (a) |
---|---|
6990.7 | νOH + νOH |
6958.1 | νOH + νOH |
6840.3 | 2νOH |
6802.7 | 2νOH |
6821.4 | 2νOH |
6782.7 | 2νOH |
6773.5 | 2νOH |
6701.6 | 2νOH |
6588.1 | 2νOH |
6576.4 | 2νOH |
6219.2 | νCH + νOH |
6173.8 | νCH + νOH |
6108.6 | νCH + νOH |
6013.0 | (νasCH2, νCH) + νOH |
5414.1 | νCH + νCH |
5324.9 | 2(νsCH2, νCH) |
5289.9 | (νasCH2, νCH) + νsCH2 |
5220.8 | 2νCH |
5074.2 | δring + νOH |
5024.2 | δring + νOH |
4896.3 | δCOH + νOH |
4875.2 | δCOH + νOH |
4839.0 | δCOH + νOH |
4787.7 | δCOH + νOH |
4729.9 | δring, δCOH + νOH |
4680.9 | δring, δCOH + νOH |
4650.1 | δring + νOH |
4606.8 | δring + νOH |
4585.3 | δCH + νOH |
4495.7 | δCH + νOH |
4287.6 | δring + νCH |
4190.1 | (δring, δCOH) + νCH |
4084.3 | (δring, δCOH) + νCH |
Reference Analysis | pH Differentiation | HPLC |
---|---|---|
Samples | 27 | 27 |
Outliers | 3 | 3 |
Factors | 3 | 3 |
R2cal | 0.967 | 0.979 |
R2val | 0.927 | 0.909 |
RMSECV/RMSEC | 1.31 | 1.28 |
RSDPLSR | 13.5% | 12.9% |
Calibration range | 121–4342 * | 499–8311 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuppner, S.; Mayr, S.; Beganovic, A.; Beć, K.; Grabska, J.; Aufschnaiter, U.; Groeneveld, M.; Rainer, M.; Jakschitz, T.; Bonn, G.K.; et al. Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus. Sensors 2020, 20, 4983. https://doi.org/10.3390/s20174983
Stuppner S, Mayr S, Beganovic A, Beć K, Grabska J, Aufschnaiter U, Groeneveld M, Rainer M, Jakschitz T, Bonn GK, et al. Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus. Sensors. 2020; 20(17):4983. https://doi.org/10.3390/s20174983
Chicago/Turabian StyleStuppner, Stefan, Sophia Mayr, Anel Beganovic, Krzysztof Beć, Justyna Grabska, Urban Aufschnaiter, Magdalena Groeneveld, Matthias Rainer, Thomas Jakschitz, Günther K. Bonn, and et al. 2020. "Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus" Sensors 20, no. 17: 4983. https://doi.org/10.3390/s20174983
APA StyleStuppner, S., Mayr, S., Beganovic, A., Beć, K., Grabska, J., Aufschnaiter, U., Groeneveld, M., Rainer, M., Jakschitz, T., Bonn, G. K., & Huck, C. W. (2020). Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus. Sensors, 20(17), 4983. https://doi.org/10.3390/s20174983