Sensory and Physicochemical Evaluation of Acacia and Linden Honey Adulterated with Sugar Syrup
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Methods
2.2.1. Reference Methods
Physicochemical Indicators
Sample Preparation for Antioxidant Capacity Assays
Total Polyphenol Content (TPC)
Ferric Reduction Antioxidant Power (FRAP)
Cupric Ion Reducing Antioxidant Capacity (CUPRAC)
Sugar Determination by HPLC
Colorimetric Measurement
2.2.2. Sensory Profile Analysis
2.2.3. Electronic Tongue (ET)
2.2.4. Electronic Nose (EN)
2.2.5. Statistics
3. Results
3.1. Results of the Reference Methods
3.2. Results of the Sensory Profile Analysis
3.3. Results of Electronic Tongue Analysis
3.4. Results of Electronic Nose Analysis
3.5. Results of Partial Least Square Regression to Predict the Properties of Sensory Profile Analysis Using ET and EN
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siddiqui, A.J.; Musharraf, S.G.; Choudhary, M.I.; Rahman, A. Application of analytical methods in authentication and adulteration of honey. Food Chem. 2017, 217, 687–698. [Google Scholar] [CrossRef]
- Escriche, I.; Kadar, M.; Juan-Borrás, M.; Domenech, E. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem. 2014, 142, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Nayik, G.A.; Dar, B.N.; Nanda, V. Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab. J. Chem. 2019, 12, 3151–3162. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Gill, J.P.S.; Bedi, J.S.; Manav, M.; Ansari, M.J.; Walia, G.S. Sensorial and physicochemical analysis of Indian honeys for assessment of quality and floral origins. Food Res. Int. 2018, 108, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Biluca, F.C.; De Gois, J.S.; Schulz, M.; Braghini, F.; Gonzaga, L.V.; Maltez, H.F.; Rodrigues, E.; Vitali, L.; Micke, G.A.; Borges, D.L.G.; et al. Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). J. Food Compos. Anal. 2017, 63, 89–97. [Google Scholar] [CrossRef]
- Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem. 2018, 252, 243–249. [Google Scholar] [CrossRef]
- Ahmed, M.; Aissat, S.; Djebli, N. Colour Intensity, Polyphenol Content and Antibacterial Capacity of Unheated and Heat-Treated Sahara Honey. J. Food Process. Technol. 2016, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Lawal, R.A.; Lawal, A.K.; Adekalu, J.B. Physico-chemical studies on adulteration of honey in Nigeria. Pak. J. Biol. Sci. 2009, 12, 1080–1084. [Google Scholar] [CrossRef]
- Marcazzan, G.L.; Mucignat-Caretta, C.; Marina Marchese, C.; Piana, M.L. A review of methods for honey sensory analysis. J. Apic. Res. 2018, 57, 75–87. [Google Scholar] [CrossRef]
- Da Costa, A.C.V.; Sousa, J.M.B.; Bezerra, T.K.A.; Da Silva, F.L.H.; Pastore, G.M.; Da Silva, M.A.A.P.; Madruga, M.S. Volatile profile of monofloral honeys produced in Brazilian semiarid region by stingless bees and key volatile compounds. LWT 2018, 94, 198–207. [Google Scholar] [CrossRef]
- González, M.M.; De Lorenzo, C.; Pérez, R.A. Development of a structured sensory honey analysis: Application to artisanal Madrid honeys. Food Sci. Technol. Int. 2010, 16, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Zábrodská, B.; Vorlová, L. Adulteration of honey and available methods for detection—A review. Acta Vet. Brno 2014, 83, S85–S102. [Google Scholar] [CrossRef] [Green Version]
- Amiry, S.; Esmaiili, M.; Alizadeh, M. Classification of adulterated honeys by multivariate analysis. Food Chem. 2017, 224, 390–397. [Google Scholar] [CrossRef]
- Popek, S.; Halagarda, M.; Kursa, K. A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis. LWT Food Sci. Technol. 2017, 77, 482–487. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Tatlisu, N.B.; Toker, O.S.; Karaman, S.; Dertli, E.; Sagdic, O.; Arici, M. Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: Correlations with HPLC-RID results. Food Res. Int. 2014, 64, 634–646. [Google Scholar] [CrossRef]
- Ribeiro, R.d.O.R.; Mársico, E.T.; Carneiro, C.d.S.; Monteiro, M.L.G.; Júnior, C.C.; Jesus, E.F.O.d. Detection of honey adulteration of high fructose corn syrup by Low Field Nuclear Magnetic Resonance (LF 1H NMR). J. Food Eng. 2014, 135, 39–43. [Google Scholar] [CrossRef]
- Viana, L.G.; Fonseca, J.G.; Costa, L.M.d.; Castro, D.B.A.; Curtolo, M.; Bernardi, M.R.V. Discriminative sensory analysis of pure honey from citrus flowers and honey with glucose syrup added (Análise sensorial discriminativa de méis de laranjeira puro e adicionados com xarope de glicose). PUBVET 2012, 6. [Google Scholar] [CrossRef] [Green Version]
- Guler, A.; Bek, Y.; Kement, V. Verification test of sensory analyses of comb and strained honeys produced as pure and feeding intensively with sucrose (Saccharum officinarum L.) syrup. Food Chem. 2008, 109, 891–898. [Google Scholar] [CrossRef]
- Piana, M.L.; Oddo, L.P.; Bentabol, A.; Bruneau, E.; Bogdanov, S.; Guyot Declerck, C. Sensory analysis applied to honey: State of the art. Apidologie 2004, 35, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Peris, M.; Escuder-Gilabert, L. Electronic noses and tongues to assess food authenticity and adulteration. Trends Food Sci. Technol. 2016, 58, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, A.; Shakaff, A.Y.M.; Masnan, M.J.; Ahmad, M.N.; Adom, A.H.; Jaafar, M.N.; Ghani, S.A.; Abdullah, A.H.; Aziz, A.H.A.; Kamarudin, L.M.; et al. A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration. Sensors 2011, 11, 7799–7822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrino-Gregorio, L.; Bataller, R.; Soto, J.; Escriche, I. Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control 2018, 91, 254–260. [Google Scholar] [CrossRef]
- Oroian, M.; Paduret, S.; Ropciuc, S. Honey adulteration detection: Voltammetric e-tongue versus official methods for physicochemical parameter determination. J. Sci. Food Agric. 2018, 98, 4304–4311. [Google Scholar] [CrossRef] [PubMed]
- European Council; European Parliament Directive 2014/63/EU of The European Parliament and of the Council of 15 May 2014 amending Council Directive 2001/110/EC relating to honey. Off. J. Eur. Communities 2014, L164, 1–5.
- Swiss Bee Research Centre. Harmonised Methods of the International Honey Commission; FAM: Liebefeld, Switzerland, 2009. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. Available online: https://www.iso.org/standard/58042.html (accessed on 3 October 2013).
- Sensory Analysis—Identification and Selection of Descriptors for Establishing a Sensory Profile by a Multidimensional Approach. Available online: https://www.iso.org/standard/19015.html (accessed on 15 December 1994).
- Sensory Analysis: General Guidance for the Design of Test Rooms. Available online: https://www.iso.org/standard/36385.html (accessed on 24 February 2010).
- Alpha MOS, αAstree Electronic Tongue User Manual; Alpha MOS: Toulouse, France, 2003.
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Education: Essex, UK, 2013. [Google Scholar]
- Kovacs, Z.; Szöllősi, D.; Zaukuu, J.-L.Z.; Bodor, Z.; Vitális, F.; Aouadi, B.; Zsom-Muha, V.; Gillay, Z. Factors Influencing the Long-Term Stability of Electronic Tongue and Application of Improved Drift Correction Methods. Biosensors 2020, 10, 74. [Google Scholar] [CrossRef]
- Oddo, L.P.; Piro, R. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35, S38–S81. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.S.M.M.; Ziena, H.M.; Youssef, M.M. Adulteration of honey with high-fructose corn syrup: Detection by different methods. Food Chem. 1993, 48, 209–212. [Google Scholar] [CrossRef]
- Ropciuc, S.; Oroian, M.; Pădureț, S.; Buculei, A. Honeydew honey adulteration: E-tongue and physico- chemical analyses. J. Fac. Food Eng. 2017, XVI, 98–103. [Google Scholar]
- Herken, E.N.; Erel, O.; Guzel, S.; Celik, H.; Ibanoglu, S. Total antioxidant, phenolic compounds, and total oxidant status of certified and uncertified Turkey’s honeys. Int. J. Food Prop. 2010, 13, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Gan, Z.; Yang, Y.; Li, J.; Wen, X.; Zhu, M.; Jiang, Y.; Ni, Y. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. J. Food Eng. 2016, 178, 151–158. [Google Scholar] [CrossRef]
- Pei, G.; Shi, B.; Zhao, L.; Gao, H.; Yin, J.; Wang, H.; Zhi, R. Information variation feature and discriminant capabilities of electronic nose for typical adulteration honey identification. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2015, 31, 325–331. [Google Scholar]
- Subari, N.; Saleh, J.M.; Shakaff, A.Y.M.; Zakaria, A. A hybrid sensing approach for pure and adulterated honey classification. Sensors 2012, 12, 14022–14040. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Botanical Origin | Geographical Origin | Altitude | Latitude | Longitude |
---|---|---|---|---|---|
HA_5 | Acacia | Nyírbogát | 150 m | 47.8014742 | 22.0620214 |
HA_6 | Acacia | Hajdúsámson | 132 m | 47.5989514 | 21.7537139 |
HA_7 | Acacia | Jásszentandrás | 100 m | 47.58291768 | 20.17316437 |
HA_8 | Acacia | Erdőtelek | 107 m | 47.6867102 | 20.3144529 |
HA_9 | Acacia | Nyírség region * | 127 m | 47.9074163 | 22.0009761 |
HA_10 | Acacia | Kisköre | 87 m | 47.4994568 | 20.4925043 |
HA_21 | Acacia | Tura | 120 m | 47.60935 | 19.5949442 |
HA_29 | Acacia | Salgótarján | 239 m | 48.0960676 | 19.8005642 |
HA_38 | Acacia | Ősagárd | 271 m | 47.8578715 | 19.1953614 |
HA_63 | Acacia | Kőtelek | 84 m | 47.3364243 | 20.4355722 |
HA_97 | Acacia | Kisköre | 87 m | 47.4994568 | 20.4925043 |
HA_101 | Acacia | Eger | 169 m | 47.8989887 | 20.3743665 |
HL_15 | Linden | Kisköre | 87 m | 47.4994568 | 20.4925043 |
HL_16 | Linden | Tiszanána | 87 m | 47.5564803 | 20.5292959 |
HL_17 | Linden | Harghita region (RO) * | 782 m | 46.6440949 | 25.6200809 |
HL_35 | Linden | Zselic | 193 m | 46.2030795 | 17.88148478 |
HL_43 | Linden | Zalacsány | 122 m | 46.8065059 | 17.097903 |
HL_45 | Linden | Covasna region (RO) * | 566 m | 45.8448991 | 26.1693108 |
HL_60 | Linden | Kőtelek | 84 m | 47.3364243 | 20.4355722 |
HL_102 | Linden | Eger | 169 m | 47.8989887 | 20.3743665 |
HL_103 | Linden | Cegléd | 106 m | 47.1716447 | 19.7977516 |
Acacia Characteristics | Linden Characteristics |
---|---|
odour intensity | odour intensity |
flowery odour | resinous odour |
fruity odour | medicinal odour |
sweet odour | fresh odour |
animalic odour | taste intensity |
dry hay odour | sweet taste |
taste intensity | bitter taste |
sweet taste | sour taste |
sour taste | resinous flavour |
flowery flavour | medicinal flavour |
caramel flavour | refreshing flavour |
taste persistence | taste persistence |
dry hay flavour | astringency |
Acacia | Linden | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Acacia | EUnonEU Acacia | A10 | A20 | A50 | Linden | EUnonEU linden | L10 | L20 | L50 | |
TPC mg GAE/100 g | 4.92 ± 3.47 ab | 5.45 ± 1.46 a | 3.81 ± 0.27 b | 3.78 ± 0.45 bc | 2.40 ± 0.43 c | 9.68 ± 2.48 ab | 8.53 ± 1.23 bc | 10.2 ± 0.24 a | 10.09 ± 0.62 a | 7.55 ± 0.41 c |
CUPRAC µmol TEQ/g | 12.32 ± 6.56 ab | 9.28 ± 3.19 c | 12.12 ± 0.35 a | 11.12 ± 0.33 b | 7.22 ± 20.34 d | 39.83 ± 14.86 a | 30.6 ± 5.16 b | 39.11 ± 1.51 a | 37.89 ± 0.96 a | 24.98 ± 0.53 c |
FRAP mg ASE/100 g | 5.87 ± 3.17 a | 6.19 ± 4.08 a | 4.03 ± 0.09 b | 3.32 ± 0.18 c | 1.54 ± 0.19 d | 32.14 ± 13.14 a | 14.43 ± 3.95 b | 26.07 ± 1.21 c | 24.09 ± 1.39 c | 13.95 ± 0.37 b |
Total soluble dry matter % | 81.8 ± 0.91 a | 82.78 ± 1.28 b | 80.1 ± 0.07 c | 79.4 ± 0 d | 77.4 ± 0 e | 82.11 ± 1.63 a | 81.67 ± 0.24 a | 81.9 ± 0.00 a | 81.4 ± 0.00 b | 78.7 ± 0.00 c |
pH | 3.87 ± 0.20 a | 3.77 ± 0.16 b | 3.52 ± 0.02 c | 3.44 ± 0.00 d | 3.54 ± 0.04 c | 4.12 ± 0.20 a | 4.09 ± 0.07 a | 4.06 ± 0.01 a | 4.03 ± 0.01 b | 3.97 ± 0.01 d |
Electrical conductivity µS/cm | 156.55 ± 26.15 a | 161.4 ± 29.52 a | 147 ± 0.71 b | 134.33 ± 0.41 c | 121.33 ± 0.41 d | 464.74 ± 137.38 a | 308.89 ± 75.71 b | 627.67 ± 1.47 c | 566 ± 0.71 d | 402.67 ± 1.08 e |
L* | 58.5 ± 2.7a | 56.51 ± 2.76 b | 60.14 ± 0.5 c | 60.33 ± 0.39 c | 60.31 ± 0.23 c | 51.19 ± 5.22 a | 51.6 ± 2.09 a | 55.13 ± 0.48 b | 55.67 ± 0.3 bc | 56.57 ± 0.48 c |
a* | −1.65 ± 0.81 bc | −2.12 ± 0.32 a | −1.71 ± 0.08 b | −1.72 ± 0.1 b | −1.4 ± 0.06 c | 1.54 ± 5.9 c | −1.67 ± 1.49 ab | −2.03 ± 0.07 b | −2.15 ± 0.02 b | −2.75 ± 0.09 a |
b* | 13.49 ± 7.15 a | 15.21 ± 2.78 a | 9.09 ± 0.03 b | 9.92 ± 0.06 c | 7.23 ± 0.09 d | 31.31 ± 8.91 b | 23.9 ± 3.66 a | 28.14 ± 0.54 b | 28.2 ± 0.12 b | 24.6 ± 0.26 a |
Glucose g/kg | 252.87 ± 17.52 a | 275.74 ± 18.95 b | - | - | - | 286.04 ± 26.30 a | 345.63 ± 37.14 b | - | - | - |
Fructose g/kg | 417.61 ± 12.66 a | 443.26 ± 57.26 b | - | - | - | 389.27 ± 22.43 a | 410.26 ± 16.54 b | - | - | - |
TPC mg GAE/100 g N = 5/Sample | CUPRAC µmol TEQ/g N = 5/Sample | FRAP mg ASE/100 g n = 5/Sample | Total Soluble Dry Matter % n = 3/Sample | pH n = 3/Sample | Electrical Conductivity µS/cm n = 3/Sample | Glucose g/kg n = 2/Sample | Fructose g/kg n = 2/Sample | |
---|---|---|---|---|---|---|---|---|
Authentic Acacia | 4.92 ± 3.47 | 12.32 ± 6.56 | 5.87 ± 3.17 | 81.8 ± 0.91 | 3.87 ± 0.2 | 156.55 ± 26.15 | 252.87 ± 17.52 | 417.61 ± 12.66 |
HA_100 | 4.37 ± 0.67 | 5.68 ± 0.42 *** | 1.35 ± 0.21 *** | 85 ± 0.14 *** | 3.52 ± 0.01 *** | 158.67 ± 0.41 | 312.41 ± 2.27 *** | 503.42 ± 0.88 *** |
HA_78 | 6.93 ± 1.26 | 9.30 ± 0.72 | 8.16 ± 0.24 *** | 81.4 ± 0 * | 3.73 ± 0 *** | 116.00 ± 0 *** | 275.90 ± 6.34 ** | 476.35 ± 2.74 *** |
HA_84 | 6.01 ± 0.42 | 11.2 ± 1.66 | 7.40 ± 3.12 | 84.2 ± 0 *** | 3.84 ± 0 | 175.00 ± 0 *** | 271.00 ± 8.16 | 409.27 ± 13.94 |
HA_99 | 4.94 ± 1.20 | 5.68 ± 1.39 *** | 2.40 ± 0.96 ** | 81.8 ± 0 | 3.76 ± 0 ** | 173.67 ± 0.41 *** | NA | NA |
Authentic Linden | 9.68 ± 2.48 | 39.83 ± 14.86 | 32.14 ± 13.14 | 82.11 ± 1.63 | 4.12 ± 0.2 | 464.74 ± 137.38 | 286.04 ± 26.30 | 389.27 ± 22.43 |
HL_79 | 9.44 ± 1.14 | 37.02 ± 2.64 | 17.98 ± 1.55 *** | 81.8 ± 0 | 4.17 ± 0 | 388.67 ± 0.41 ** | 310.49 ± 1.86 *** | 394.81 ± 0.25 |
HL_83 | 7.41 ± 1.11 | 28.72 ± 1.7 *** | 12.34 ± 5.31 *** | 81.6 ± 0.28 | 4.03 ± 0.02 * | 212 ± 1.41 *** | 380.77 ± 3.56 *** | 425.72 ± 4.25 *** |
HL_98 | 8.74 ± 0.4 | 26.05 ± 1.23 *** | 12.97 ± 0.29 *** | 81.6 ± 0.28 | 4.05 ± 0.01 | 326 ± 1.22 *** | NA | NA |
Electronic Tongue | Electronic Nose | |||||||
---|---|---|---|---|---|---|---|---|
Authentic | 10% Syrup | 20% Syrup | 50% Syrup | Authentic | 10% Syrup | 20% Syrup | 50% Syrup | |
HA_100 | 88.24% | 11.76% | 0.00% | 0.00% | 40.74% | 59.26% | 0.00% | 0.00% |
HA_78 | 96.15% | 3.85% | 0.00% | 0.00% | 5.26% | 0.00% | 94.74% | 0.00% |
HA_84 | 100.00% | 0.00% | 0.00% | 0.00% | 29.63% | 70.37% | 0.00% | 0.00% |
HA_99 | 0.00% | 33.33% | 0.00% | 66.67% | 0.00% | 16.67% | 83.33% | 0.00% |
HL_79 | 100.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 100.00% |
HL_83 | 100.00% | 0.00% | 0.00% | 0.00% | 29.63% | 29.63% | 22.22% | 18.52% |
HL_98 | 0.00% | 0.00% | 0.00% | 100.00% | 52.38% | 38.10% | 9.52% | 0.00% |
Electronic Tongue | Electronic Nose | ||||||||||||
Latent variables | Data points | R2 | R2CV | RMSE | RMSECV | Latent variables | Data points | R2 | R2CV | RMSE | RMSECV | ||
Acacia | fruity_odour | 4 | 59 | 0.7966 | 0.7520 | 2.6617 | 2.9360 | NA | NA | NA | NA | NA | NA |
animalic_odour | 5 | 60 | 0.9541 | 0.9415 | 3.6172 | 4.0789 | 4 | 38 | 0.5715 | 0.3321 | 10.5446 | 13.1686 | |
flowery_odour | 5 | 59 | 0.9102 | 0.8826 | 2.5253 | 2.8853 | 4 | 37 | 0.6334 | 0.4083 | 5.0010 | 6.3486 | |
fresh_odour | 6 | 60 | 0.8972 | 0.8688 | 2.1964 | 2.4790 | 4 | 42 | 0.3331 | 0.0224 | 5.3930 | 6.5175 | |
flowery_flavour | 5 | 53 | 0.9147 | 0.8880 | 3.5391 | 4.0509 | 4 | 38 | 0.6526 | 0.4564 | 6.8022 | 8.5140 | |
sweet_taste | 3 | 63 | 0.6049 | 0.5244 | 4.2802 | 4.6922 | 4 | 40 | 0.6385 | 0.4578 | 3.9798 | 4.8696 | |
caramel_flavour | 6 | 58 | 0.7467 | 0.6765 | 5.2581 | 5.9363 | 4 | 40 | 0.5621 | 0.3060 | 7.1048 | 8.9776 | |
Electronic tongue | Electronic nose | ||||||||||||
Latent variables | Data points | R2 | R2CV | RMSE | RMSECV | Latent variables | Data points | R2 | R2CV | RMSE | RMSECV | ||
Linden | odour_intensity | 4 | 43 | 0.9732 | 0.9666 | 2.2630 | 2.5251 | 4 | 35 | 0.8314 | 0.7290 | 4.7812 | 6.0297 |
resinous_odour | 5 | 46 | 0.9534 | 0.9399 | 1.7048 | 1.9322 | 3 | 32 | 0.8681 | 0.8126 | 2.7420 | 3.2589 | |
fresh_odour | 4 | 41 | 0.8404 | 0.7964 | 2.6335 | 2.9707 | 3 | 31 | 0.5388 | 0.3851 | 3.7529 | 4.3241 | |
taste_intensity | 4 | 44 | 0.8670 | 0.8357 | 2.7052 | 3.0034 | 3 | 32 | 0.7987 | 0.7244 | 3.3300 | 3.8900 | |
bitter_taste | 4 | 43 | 0.9128 | 0.8882 | 2.2107 | 2.5010 | 3 | 32 | 0.9362 | 0.9044 | 1.4488 | 1.7662 | |
sour_taste | 3 | 44 | 0.8331 | 0.8039 | 2.0882 | 2.2615 | 4 | 37 | 0.5722 | 0.3690 | 3.3499 | 4.0562 | |
sweet_taste | 4 | 45 | 0.8658 | 0.8204 | 3.1057 | 3.5876 | 3 | 32 | 0.8800 | 0.8121 | 2.5577 | 3.1829 | |
medicinal_flavour | 4 | 42 | 0.9142 | 0.8884 | 2.7856 | 3.1724 | 4 | 35 | 0.9288 | 0.9011 | 2.3415 | 2.7549 | |
refreshing_flavour | 4 | 41 | 0.8624 | 0.8235 | 2.5896 | 2.9287 | 3 | 34 | 0.5392 | 0.3840 | 4.1009 | 4.7324 | |
taste_persistence | 4 | 42 | 0.9511 | 0.9399 | 2.3533 | 2.6051 | 3 | 33 | 0.8706 | 0.8274 | 3.9727 | 4.5988 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodor, Z.; Kovacs, Z.; Rashed, M.S.; Kókai, Z.; Dalmadi, I.; Benedek, C. Sensory and Physicochemical Evaluation of Acacia and Linden Honey Adulterated with Sugar Syrup. Sensors 2020, 20, 4845. https://doi.org/10.3390/s20174845
Bodor Z, Kovacs Z, Rashed MS, Kókai Z, Dalmadi I, Benedek C. Sensory and Physicochemical Evaluation of Acacia and Linden Honey Adulterated with Sugar Syrup. Sensors. 2020; 20(17):4845. https://doi.org/10.3390/s20174845
Chicago/Turabian StyleBodor, Zsanett, Zoltan Kovacs, Mahmoud Said Rashed, Zoltán Kókai, István Dalmadi, and Csilla Benedek. 2020. "Sensory and Physicochemical Evaluation of Acacia and Linden Honey Adulterated with Sugar Syrup" Sensors 20, no. 17: 4845. https://doi.org/10.3390/s20174845
APA StyleBodor, Z., Kovacs, Z., Rashed, M. S., Kókai, Z., Dalmadi, I., & Benedek, C. (2020). Sensory and Physicochemical Evaluation of Acacia and Linden Honey Adulterated with Sugar Syrup. Sensors, 20(17), 4845. https://doi.org/10.3390/s20174845