Monitoring Shear Behavior of Prestressed Concrete Bridge Girders Using Acoustic Emission and Digital Image Correlation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Experiments
2.1.1. Materials and Geometry
2.1.2. Test Setup
2.1.3. Traditional Instrumentation
2.2. AE Monitoring
2.2.1. Measurement of Wave Transfer Properties of Concrete Medium
2.2.2. Source Localization
2.2.3. Source Classification
2.3. Digital Image Correlation
2.3.1. Crack Pattern
2.3.2. Crack Kinematics and Aggregate Interlock
2.3.3. Angle of the Compression Field
3. Results
3.1. Tradional Measurement Results
3.2. AE and DIC Measurements Results
3.2.1. Cracking Load
3.2.2. Aggregate Interlock
3.2.3. Angle of the Compression Field
4. Discussion
4.1. AE and DIC Compared to Traditional Measurements
4.2. Application of AE and DIC in Field Tests
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lantsoght, E.O.L.; Koekkoek, R.; van der Veen, C.; Sliedrecht, H. Fatigue Assessment of Prestressed Concrete Slab-Between-Girder Bridges. Appl. Sci. 2019, 9, 2312. [Google Scholar] [CrossRef] [Green Version]
- Roosen, M.; van der Veen, C.; Hordijk, D. Suitability of Shear Tension Code Requirements for the Assessment of Existing Structures Build-Up with Prestressed I-and T-Shape Girders. High Tech Concrete: Where Technology and Engineering Meet. In Proceedings of the 2017 fib Symposium, Maastricht, The Netherlands, 12–14 June 2017; pp. 786–793. [Google Scholar]
- CEN European Committee for Standardization. EN 1992-1-1:2004. Eurocode 2: Design of Concrete Structures—Part 1-1 General Rules and Rules for Buildings; CEN European Committee for Standardization: Brussels, Belgium, 2005; pp. 83–117. [Google Scholar]
- Lantsoght, E.O.L.; Zarate Garnica, G.; Zhang, F.; Yang, Y.; Park, M.; Sliedrecht, H. Shear experiments of prestressed concrete bridge girders. ACI Struct. J. under review.
- Park, M.; Lantsoght, E.O.L.; Zarate Garnica, G.; Yang, Y.; Sliedrecht, H. Analysis of Shear Capacity of Prestressed Concrete Bridge Girders. ACI Struct. J. under review.
- Zhang, F.; Pahlavan, L.; Yang, Y. Evaluation of acoustic emission source localization accuracy in concrete structures. Struct. Health Monit. 2020, 1475921720915625. [Google Scholar] [CrossRef]
- Kundu, T. Acoustic source localization. Ultrasonics 2013, 54, 25–38. [Google Scholar] [CrossRef]
- Ohtsu, M. Recommendation of RILEM TC 212-ACD: Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete: Test method for classification of active cracks in concrete structures by acoustic emission. Mater. Struct. Mater. Constr. 2010, 43, 1187–1189. [Google Scholar] [CrossRef] [Green Version]
- Soulioti, D.; Barkoula, N.M.; Paipetis, A.; Matikas, T.E.; Shiotani, T.; Aggelis, D.G. Acoustic emission behavior of steel fibre reinforced concrete under bending. Constr. Build. Mater. 2009, 23, 3532–3536. [Google Scholar] [CrossRef] [Green Version]
- Van Steen, C.; Pahlavan, L.; Wevers, M.; Verstrynge, E. Localisation and characterisation of corrosion damage in reinforced concrete by means of acoustic emission and X-ray computed tomography. Constr. Build. Mater. 2019, 197, 21–29. [Google Scholar] [CrossRef]
- Campana, S.; Fernández Ruiz, M.; Anastasi, A.; Muttoni, A. Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Mag. Concr. Res. 2013, 65, 386–404. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.; Huber, T.; Kollegger, J. Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Eng. Struct. 2016, 113, 41–58. [Google Scholar] [CrossRef]
- Cavagnis, F.; Fernández Ruiz, M.; Muttoni, A. An analysis of the shear-transfer actions in reinforced concrete members without transverse reinforcement based on refined experimental measurements. Struct. Concr. 2018, 19, 49–64. [Google Scholar] [CrossRef] [Green Version]
- De Wilder, K.; Lava, P.; Debruyne, D.; Wang, Y.; De Roeck, G.; Vandewalle, L. Experimental investigation on the shear capacity of prestressed concrete beams using digital image correlation. Eng. Struct. 2015, 82, 82–92. [Google Scholar] [CrossRef]
- Gencturk, B.; Hossain, K.; Kapadia, A.; Labib, E.; Mo, Y.-L. Use of digital image correlation technique in full-scale testing of prestressed concrete structures. Measurement 2014, 47, 505–515. [Google Scholar] [CrossRef]
- Schmidt, J.W.; Hansen, S.G.; Barbosa, R.A.; Henriksen, A. Novel shear capacity testing of ASR damaged full scale concrete bridge. Eng. Struct. 2014, 79, 365–374. [Google Scholar] [CrossRef]
- McCormick, N.J.; Lord, J.D. Practical In Situ Applications of DIC for Large Structures. Appl. Mech. Mater. 2010, 24, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Schacht, G.; Bolle, G.; Marx, S. Experimental in-situ investigation of the shear bearing capacity of pre-stressed hollow core slabs. In Concrete Repair, Rehabilitation and Retrofitting IV; CRC Press: London, UK, 2015; pp. 851–859. [Google Scholar] [CrossRef]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2014; p. 503. [Google Scholar]
- Higgs, A.; Barr, P.J.; Halling, M.W. Comparison of Measured and AASHTO LRFD-Predicted Residual Prestress Forces, Shear and Flexural Capacities of High-Strength Prestressed-Concrete Bridge Girders. J. Bridge Eng. 2015, 20, 05014009. [Google Scholar] [CrossRef]
- Vecchio, F.; Collins, M.P. The modified compression-field theory for reinforced elements subjected to shear. ACI J. 1986, 83, 219–231. [Google Scholar]
- AASHTO. LRFD Bridge Design Specifications and Commentary; Fourth edition with 2008 interim revisions; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2008. [Google Scholar]
- fib. Model Code 2010: Final Draft; International Federation for Structural Concrete: Lausanne, Switzerland, 2012. [Google Scholar]
- Walraven, J.C. Aggregate Interlock; Delft University Press: Delft, The Netherland, 1980. [Google Scholar]
- Nielsen, M.P.; Hoang, L.C. Limit Analysis and Concrete Plasticity; CRC Press: Boca Raton, USA, 2016. [Google Scholar]
- Physical Acoustics. R6I-AST Sensor. 2008. Available online: https://www.physicalacoustics.com/by-product/sensors/R6I-AST-60-kHz-Integral-Preamp-AE-Sensor (accessed on 30 September 2020).
- Aggelis, D.G.; Shiotani, T.; Papacharalampopoulos, A.; Polyzos, D. The influence of propagation path on elastic waves as measured by acoustic emission parameters. Struct. Health Monit. 2011, 11, 359–366. [Google Scholar] [CrossRef]
- Polyzos, D.; Papacharalampopoulos, A.; Shiotani, T.; Aggelis, D.G. Dependence of AE parameters on the propagation distance. J. Acoust. Emiss. 2011, 29, 57–67. [Google Scholar]
- Zhang, F.; Yang, Y. Acoustic Emission based Crack Tracking for Existing Concrete Structural Members. In Proceedings of the 9th International Conference on Acoustic Emission, Chicago, IL, USA, 17–20 June 2019. [Google Scholar]
- Pahlavan, L.; Zhang, F.; Blacquière, G.; Yang, Y.; Hordijk, D. Interaction of Ultrasonic Waves with Partially-closed Cracks in Concrete Structures. Constr. Build. Mater. 2018, 167, 899–906. [Google Scholar] [CrossRef]
- Zhang, F. Evaluation of Acoustic Emission Monitoring of Existing Concrete Structures. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
- Kurz, J.H.; Grosse, C.U.; Reinhardt, H.-W. Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics 2005, 43, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Grosse, C.; Ohtsu, M. Acoustic Emission Testing: Basics for Research-Applications in Civil Engineering; Springer: Berlin, Germany, 2008; pp. 1–404. [Google Scholar] [CrossRef]
- Ohtsu, M.; Uchida, M.; Okamoto, T.; Yuyama, S. Damage assessment of reinforced concrete beams qualified by acoustic emission. ACI Struct. J. 2002, 99, 411–417. [Google Scholar]
- Pan, B.; Xie, H.; Guo, Z.; Hua, T. Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt. Eng. 2007, 46. [Google Scholar] [CrossRef]
- Jones, E. Documentation for Matlab-Based DIC Code; Urbana-Champaign, University of Illinois: Urbana-Champaign, IL, USA, 2015. [Google Scholar]
- Zarate, G. Analysis of shear transfer mechanisms in concrete members without shear reinforcement based on kinematic measurements. Master’s Thesis, TU Delft, Delft, The Netherlands, 2018. [Google Scholar]
- Amiot, F.; Bornert, M.; Doumalin, P.; Dupré, J.C.; Fazzini, M.; Orteu, J.J.; Poilâne, C.; Robert, L.; Rotinat, R.; Toussaint, E.; et al. Assessment of Digital Image Correlation Measurement Accuracy in the Ultimate Error Regime: Main Results of a Collaborative Benchmark. Strain 2013, 49, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Barranger, Y.; Doumalin, P.; Dupré, J.C.; Germaneau, A. Digital Image Correlation accuracy: Influence of kind of speckle and recording setup. EPJ Web Conf. 2010, 6. [Google Scholar] [CrossRef]
- Walraven, J.C. Fundamental Analysis of Aggregate Interlock. ASCE J. Struct. Div. 1981, 107, 2245–2270. [Google Scholar]
- Van Steen, C.; Zhang, F.; Nasser, H.; Yang, Y.; Verstrynge, E. On-site inspection of a reinforced concrete structure deteriorated due to corrosion by means of acoustic emission and other techniques. In Proceedings of the Conference: Structural Faults and Repair 2018, Edinburgh, UK, 15–17 May 2018. [Google Scholar]
- Schmidt, J.W.; Halding, P.S.; Jensenm, T.W.; Engelund, S. High Magnitude Loading of Concrete Bridges. ACI Symp. Publ. 2018, 323, 9.1–9.20. [Google Scholar]
Girder No. | a (mm) | a/d | Fcrack (kN) | Ffs (kN) | Fst (kN) | Ffail (kN) | xcrit (mm) |
---|---|---|---|---|---|---|---|
HPZ01 | 2903 | 3.6 | 965 | 1344 | 1480 | 1893 | 1828 |
HPZ02 | 2903 | 3.6 | 1001 | 1299 | 1350 | 1849 | 1873 |
HPZ03 | 4400 | 4.9 | 1050 | 1250 | 1600 | 1990 | 3460 |
HPZ04 | 4400 | 4.9 | 1100 | 1450 | 1750 | 2380 | 2832 |
Girder No. | Technique | FCR1 (kN) | FCR2 (kN) | FCR3 (kN) | FCR4 (kN) | FCR5 (kN) | FCR6 (kN) | FCR7 (kN) | FCR8 (kN) | FCR9 (kN) | FCR10 (kN) |
---|---|---|---|---|---|---|---|---|---|---|---|
HPZ01 | DIC | 1100 1 | 1200 | 1350 | 1350 | 1470 * | 1790 | 1880 | |||
AE | 850/950 2 | 1150 | 1300 | 1350 | - 3 | - | - | ||||
HPZ02 | DIC | 1100 | 1220 | 1300 | 1300 * | 1550 | |||||
AE | 950/1000 | 1245 | 1300 | 1300 | - | ||||||
HPZ03 | DIC | 1150 | 1050 | 1250 | 1550 | 1400 | 1600 * | ||||
AE | 1200 | 950/1000 | 1250 | 1400 | - | - | |||||
HPZ04 | DIC | 1150 | 1250 | 1400 | 1600 | 1535 | 1600 * | 1830 | 2090 | 1750 | 1790 |
AE | 1000/1100 | 1250 | 1400 | - | 1500 | 1600 | - | - | 1700 | 1800 |
θcomp [°] | θcracks [°] | |
---|---|---|
HPZ01 | 18.1 | 22–34 |
HPZ02 | 20.1 | 25–33 |
HPZ03 | 19.9 | 22–31 |
HPZ04 | 18.5 | 17–31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zarate Garnica, G.I.; Yang, Y.; Lantsoght, E.; Sliedrecht, H. Monitoring Shear Behavior of Prestressed Concrete Bridge Girders Using Acoustic Emission and Digital Image Correlation. Sensors 2020, 20, 5622. https://doi.org/10.3390/s20195622
Zhang F, Zarate Garnica GI, Yang Y, Lantsoght E, Sliedrecht H. Monitoring Shear Behavior of Prestressed Concrete Bridge Girders Using Acoustic Emission and Digital Image Correlation. Sensors. 2020; 20(19):5622. https://doi.org/10.3390/s20195622
Chicago/Turabian StyleZhang, Fengqiao, Gabriela I. Zarate Garnica, Yuguang Yang, Eva Lantsoght, and Henk Sliedrecht. 2020. "Monitoring Shear Behavior of Prestressed Concrete Bridge Girders Using Acoustic Emission and Digital Image Correlation" Sensors 20, no. 19: 5622. https://doi.org/10.3390/s20195622
APA StyleZhang, F., Zarate Garnica, G. I., Yang, Y., Lantsoght, E., & Sliedrecht, H. (2020). Monitoring Shear Behavior of Prestressed Concrete Bridge Girders Using Acoustic Emission and Digital Image Correlation. Sensors, 20(19), 5622. https://doi.org/10.3390/s20195622