Recognition of Negative Emotion Using Long Short-Term Memory with Bio-Signal Feature Compression
Abstract
:1. Introduction
2. Methods
2.1. Bio-Signal Acquisition
2.2. Bio-Signal Feature
2.2.1. Feature Extraction
2.2.2. Feature Vector Processing
2.3. Emotion Recognizer
2.3.1. Feature Compression
2.3.2. Emotion Recognizer
3. Results
3.1. Extracted Features
3.2. Results of Auto-Encoding
3.3. Classification Performance
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hosseini, S.A.; Naghibi-Sistani, M.B. Classification of emotional stress using brain activity. In Applied Biomedical Engineering; Johns Hopkins Engineering for Professionals: Washington, DC, USA, 2011; pp. 313–336. [Google Scholar]
- Maaoui, C.; Pruski, A. Emotion recognition through physiological signals for human-machine communication. In Cutting Edge Robotics; IntechOpen: London, UK, 2010. [Google Scholar]
- Carroll, E. Emotion theory and research: Highlights, unanswered questions, and emerging issues. Annu. Rev. Psychol. 2009, 60, 1–25. [Google Scholar]
- Seoane, F.; Mohino-Herranz, I.; Ferreira, J.; Alvarez, L.; Buendia, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R. Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 2014, 14, 7120–7141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maria, E.; Matthias, L.; Sten, H. Emotion Recognition from Physiological Signal Analysis: A Review. Electron. Notes Theor. Comput. Sci. 2019, 343, 35–55. [Google Scholar]
- Ekman, P.; Friesen, W.V.; O’Sullivan, M.; Chan, A.; Diacoyanni-Tarlatzis, I.; Heider, K.; Krause, R.; LeCompte, W.A.; Pitcairn, T.; Ricci-Bitti, P.E. Universals and cultural differences in the judgments of facial expressions of emotion. J. Personal. Soc. Psychol. 1987, 53, 712–717. [Google Scholar] [CrossRef]
- Isaacowitz, D.M.; Löckenhoff, C.E.; Lane, R.D.; Wright, R.; Sechrest, L.; Riedel, R.; Costa, P.T.; Loeckenhoff, C. Age differences in recognition of emotion in lexical stimuli and facial expressions. Psychol. Aging 2007, 22, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Chen, M.; Hu, S.; Cao, Y.; Kozma, R. PNN for EEG-based Emotion Recognition. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 002319–002323. [Google Scholar]
- Liu, J.; Meng, H.; Nandi, A.; Li, M. Emotion detection from EEG recordings. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016. [Google Scholar]
- Zheng, W.-L.; Zhu, J.-Y.; Lu, B.-L. Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect. Comput. 2017, 10, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Wen, W.H.; Liu, G.Y.; Cheng, N.P.; Wei, J.; Shangguan, P.C.; Huang, W.J. Emotion recognition based on multi-variant correlation of physiological signals. IEEE Trans. Affect. Comput. 2014, 5, 126–140. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, L.; Yazdani, A.; Vesin, J.M. Using cardio-respiratory signals to recognize emotions elicited by watching music video clips. In Proceedings of the 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP), Montreal, QC, Canada, 21–23 September 2016; pp. 1–5. [Google Scholar]
- Guo, H.W.; Huang, Y.S.; Lin, C.H.; Chien, J.C.; Haraikawa, K.; Shieh, J.S. Heart Rate Variability Signal Features for Emotion Recognition by Using Principal Component Analysis and Support Vectors Machine. In Proceedings of the 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, 31 October–2 November 2016; pp. 274–277. [Google Scholar]
- Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A review of emotion recognition using physiological signals. Sensors 2018, 18, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Mo, J. Emotion feature selection from physiological signals using tabu search. In Proceedings of the 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; pp. 3148–3150. [Google Scholar]
- Shin, D.; Shin, D.; Shin, D. Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents. Multimed. Tools Appl. 2017, 76, 11449–11470. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.-H. Emotion recognition using physiological signals from multiple subjects. In Proceedings of the Second International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2006), Pasadena, CA, USA, 18–20 December 2006; pp. 355–358. [Google Scholar]
- Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Healey, J.; Picard, R. Digital processing of affective signals. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Seattle, WA, USA, 15 May 1998; pp. 3749–3752. [Google Scholar]
- Lee, J.; Yoo, S.K. Design of User-Customized Negative Emotion Classifier Based on Feature Selection Using Physiological Signal Sensors. Sensors 2018, 18, 4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrafioti, F.; Hatzinakos, D.; Anderson, A.K. ECG pattern analysis for emotion detection. IEEE Trans. Affect. Comput. 2011, 3, 102–115. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Acharya, R.; Krishnan, S.M.; Spaan, J.A.; Suri, J.S. Heart rate variability. In Advances in Cardiac Signal Processing; Springer: Berlin/Heidelberg, Germany, 2007; pp. 121–165. [Google Scholar]
- Zhai, J.; Barreto, A. Stress Detection in Computer Users based on Digital Signal Processing of Noninvasive Physiological Variables. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; Volume 1, pp. 1355–1358. [Google Scholar]
- Swangnetr, M.; Kaber, D.B. Emotional State Classification in Patient–obot Interaction using Wavelet Analysis and Statistics-based Feature Selection. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 63–75. [Google Scholar] [CrossRef]
- Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59. [Google Scholar]
- Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Massachusetts, USA, 2017. [Google Scholar]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y.; Grandvalet, Y. No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 2004, 5, 1089–1105. [Google Scholar]
- Abu-Mostafa, Y.S.; Magdon-Ismail, M.; Lin, H.-T. Learning from Data; AMLBook: New York, NY, USA, 2012. [Google Scholar]
- Carvalho, S.; Leite, J.; Galdo-Álvarez, S.; Gonçalves, Ó.F. The emotional movie database (EMDB): A self-report and psychophysiological study. Appl. Psychophysiol. Biofeedback. 2012, 37, 279–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
Signal | Extracted Features |
---|---|
ECG | Mean HRV, SDNN RMSSD, NN50, pNN50, LF/HF, TF, nHF, nLF |
ST | Mean ST, SD ST |
GSR | ZC GSRP, SD GSRP, Mean GSRT, SD GSRT, Amp GSRT |
Value | Accuracy | Sensitivity | Specificity |
---|---|---|---|
Suggested | 98.4 ± 3.7 | 96.7 ± 3.7 | 100.0 ± 0.0 |
NN | 87.8 ± 3.9 | 91.1 ± 5.0 | 84.4 ± 5.6 |
DNN | 91.3 ± 3.0 | 89.1 ± 4.8 | 93.2 ± 3.9 |
DBN | 94.4 ± 3.2 | 95.5 ± 2.9 | 93.0 ± 5.6 |
SAE | 95.2 ± 5.9 | 95.3 ± 7.3 | 95.8 ± 5.9 |
Value | W | z | p-Value |
---|---|---|---|
NN | 536 | 4.9 | P < 0.01 |
DNN | 527 | 4.7 | P < 0.01 |
DBN | 500 | 3.9 | P < 0.01 |
SAE | 464 | 2.8 | P < 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Yoo, S.K. Recognition of Negative Emotion Using Long Short-Term Memory with Bio-Signal Feature Compression. Sensors 2020, 20, 573. https://doi.org/10.3390/s20020573
Lee J, Yoo SK. Recognition of Negative Emotion Using Long Short-Term Memory with Bio-Signal Feature Compression. Sensors. 2020; 20(2):573. https://doi.org/10.3390/s20020573
Chicago/Turabian StyleLee, JeeEun, and Sun K. Yoo. 2020. "Recognition of Negative Emotion Using Long Short-Term Memory with Bio-Signal Feature Compression" Sensors 20, no. 2: 573. https://doi.org/10.3390/s20020573
APA StyleLee, J., & Yoo, S. K. (2020). Recognition of Negative Emotion Using Long Short-Term Memory with Bio-Signal Feature Compression. Sensors, 20(2), 573. https://doi.org/10.3390/s20020573