Oxygen Gas Sensing with Photothermal Spectroscopy in a Hollow-Core Negative Curvature Fiber
Abstract
:1. Introduction
2. Principle
2.1. Design and Fabrication of Gas Cell
2.2. PT Phase Modulation in the HC-NCF
3. Experiments and Results
3.1. Experimental Setup
3.2. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jatana, G.S.; Perfetto, A.K.; Geckler, S.C.; Partridge, W.P. Absorption spectroscopy based high-speed oxygen concentration measurements at elevated gas temperatures. Sens. Actuators B Chem. 2019, 293, 173–182. [Google Scholar] [CrossRef]
- Chen, S.J.; Silver, J.A. Detection of explosive mixtures in the ullage of aircraft fuel tanks. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 5–8 January 2004; p. 548. [Google Scholar] [CrossRef] [Green Version]
- Shuk, P.; Jantz, R. Oxygen gas sensing technologies: A comprehensive review. In Proceedings of the 2015 9th International Conference on Sensing Technology, Auckland, New Zealand, 8–10 December 2015; pp. 12–17. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.M.; Li, S. Minreview: Recent advances in the development of gaseous and dissolved oxygen sensors. Instrum. Sci. Technol. 2019, 47, 19–50. [Google Scholar] [CrossRef]
- Neethu, S.; Verma, R.; Kamble, S.S.; Radhakrishnan, J.K.; Krishnapur, P.P.; Padaki, V.C. Validation of wavelength modulation spectroscopy techniques for oxygen concentration measurement. Sens. Actuators B Chem. 2014, 192, 70–76. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, J.; Wang, L.; Gao, Q.; Zhang, Z. Sensitive detection of oxygen using a diffused integrating cavity as a gas absorption cell. Sens. Actuators B Chem. 2017, 241, 1076–1081. [Google Scholar] [CrossRef]
- Munzke, D.; Böhm, M.; Reich, O. Gaseous oxygen detection using hollow-core fiber-based linear cavity ring-down spectroscopy. J. Lightwave Technol. 2015, 33, 2524–2529. [Google Scholar] [CrossRef]
- Davis, C.C.; Petuchowski, S.J. Phase fluctuation optical heterodyne spectroscopy of gases. Appl. Opt. 1981, 20, 4151. [Google Scholar] [CrossRef]
- Bialkowski, S.E. Photothermal Spectroscopy Methods for Chemical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Jin, W.; Cao, Y.; Yang, F.; Ho, H.L. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Jin, W.; Yang, F.; Tan, Y.; Ho, H.L. Performance optimization of hollow-core fiber photothermal gas sensors. Opt. Lett. 2017, 42, 4712. [Google Scholar] [CrossRef] [PubMed]
- Krzempek, K. A Review of Photothermal Detection Techniques for Gas Sensing Applications. Appl. Sci. 2019, 9, 2826. [Google Scholar] [CrossRef] [Green Version]
- Pryamikov, A.D.; Biriukov, A.S.; Kosolapov, A.F.; Plotnichenko, V.G.; Semjonov, S.L.; Dianov, E.M. Demonstration of a waveguide regime for a silica hollow—Core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 35 μm. Opt. Express 2011, 19, 1441. [Google Scholar] [CrossRef] [PubMed]
- Belardi, W. Design and Properties of Hollow Antiresonant Fibers for the Visible and Near Infrared Spectral Range. J. Lightwave Technol. 2015, 33, 4497–4503. [Google Scholar] [CrossRef]
- Yao, C.; Wang, Q.; Lin, Y.; Jin, W.; Xiao, L.; Gao, S.; Wang, Y.; Wang, P.; Ren, W. Photothermal CO detection in a hollow-core negative curvature fiber. Opt. Lett. 2019, 44, 4048. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, W.; Yang, F.; Ma, J.; Wang, C.; Ho, H.L.; Liu, Y. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillis, K.A.; Havey, D.K.; Hodges, J.T. Standard photoacoustic spectrometer: Model and validation using O2 A-band spectra. Rev. Sci. Instrum. 2010, 81. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, T.L.; McCoubrey, J.C. Molecular Energy Transfer in Gases; Butterworths: Oxford, UK, 1961. [Google Scholar]
- Bao, H.; Hong, Y.; Jin, W.; Ho, H.L.; Wang, C.; Gao, S.; Wang, Y.; Wang, P. Modeling and performance evaluation of in-line Fabry-Perot photothermal gas sensors with hollow-core optical fibers. Opt. Express 2020, 28, 5423–5435. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Gao, S.; Wang, Y.; Wang, P.; Jin, W.; Ren, W. MIR-pump NIR-probe fiber-optic photothermal spectroscopy with background-free first harmonic detection. IEEE Sens. J. 2020, 20, 12709–12715. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Bao, H.; Jin, W.; Jiang, S.; Ho, H.L.; Gao, S.; Wang, Y. Oxygen Gas Sensing with Photothermal Spectroscopy in a Hollow-Core Negative Curvature Fiber. Sensors 2020, 20, 6084. https://doi.org/10.3390/s20216084
Hong Y, Bao H, Jin W, Jiang S, Ho HL, Gao S, Wang Y. Oxygen Gas Sensing with Photothermal Spectroscopy in a Hollow-Core Negative Curvature Fiber. Sensors. 2020; 20(21):6084. https://doi.org/10.3390/s20216084
Chicago/Turabian StyleHong, Yingzhen, Haihong Bao, Wei Jin, Shoulin Jiang, Hoi Lut Ho, Shoufei Gao, and Yingying Wang. 2020. "Oxygen Gas Sensing with Photothermal Spectroscopy in a Hollow-Core Negative Curvature Fiber" Sensors 20, no. 21: 6084. https://doi.org/10.3390/s20216084
APA StyleHong, Y., Bao, H., Jin, W., Jiang, S., Ho, H. L., Gao, S., & Wang, Y. (2020). Oxygen Gas Sensing with Photothermal Spectroscopy in a Hollow-Core Negative Curvature Fiber. Sensors, 20(21), 6084. https://doi.org/10.3390/s20216084