Bismuth Subcarbonate Decorated Reduced Graphene Oxide Nanocomposite for the Sensitive Stripping Voltammetry Analysis of Pb(II) and Cd(II) in Water
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Instruments
2.3. Preparation of Graphene Oxide (GO) Nanosheets
2.4. Synthesis of (BiO)2CO3-rGO Nanocomposite
2.5. Electrode Fabrication and Electrochemical Detection of Cd(II) and Pb(II)
2.6. Preparation of Synthetic Yamuna River Water
3. Results and Discussion
3.1. Characterization of (BiO)2CO3-rGO Nanocomposite
3.1.1. XRD Analysis
3.1.2. FTIR Spectroscopic Analysis
3.1.3. Raman Spectroscopic Analysis
3.1.4. SEM Imaging
3.2. Electrochemical Characteristics of Different Modified Electrodes
3.3. Analytical Performance of (BiO)2CO3-rGO-Nafion/GCE
3.4. Stability Verification
3.5. Interference Studies
3.6. Application to Synthetic Water Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dinis, M.D.L.; Fiuza, A. Exposure assessment to heavy metals in the environment: Measures to eliminate or reduce the exposure to critical receptors. In Environmental Heavy Metal Pollution and Effects on Child Mental Development; Springer: Berlin/Heidelberg, Germany, 2011; pp. 27–50. [Google Scholar]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Li, H.; Chien, S.-H.; Hsieh, M.-K.; Dzombak, D.A.; Vidic, R.D. Escalating water demand for energy production and the potential for use of treated municipal wastewater. Environ. Sci. Technol. 2011, 45, 4195–4200. [Google Scholar] [CrossRef] [PubMed]
- Safari, I.; Walker, M.E.; Hsieh, M.K.; Dzombak, D.A.; Liu, W.; Vidic, R.D.; Miller, D.C.; Abbasian, J. Utilization of municipal wastewater for cooling in thermoelectric power plants. Fuel 2013, 111, 103–113. [Google Scholar] [CrossRef]
- Vidic, R.; Dzombak, D.; Hsieh, M.K.; Li, H.; Chien, S.H.; Feng, Y.; Chowdhury, I.; Monnell, J. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants; University of Pittsburgh: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Hsieh, M.K.; Li, H.; Chien, S.H.; Monnell, J.D.; Chowdhury, I.; Dzombak, D.A.; Vidic, R.D. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems. Water Environ. Res. 2010, 82, 2346–2356. [Google Scholar] [CrossRef]
- Obana, H.; Okihashi, M.; Akutsu, K.; Kitagawa, Y.; Hori, S. Determination of neonicotinoid pesticide residues in vegetables and fruits with solid phase extraction and liquid chromatography mass spectrometry. J. Agric. Food Chem. 2003, 51, 2501–2505. [Google Scholar] [CrossRef]
- Stosnach, H. On-site analysis of heavy metal contaminated areas by means of total reflection X-ray fluorescence analysis (TXRF). Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 1141–1145. [Google Scholar] [CrossRef]
- Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011, 111, 3433–3458. [Google Scholar] [CrossRef]
- Sen, I.; Shandil, A.; Shrivastava, V.S. Study for determination of heavy metals in fish species of the River Yamuna (Delhi) by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Adv. Appl. Sci. Res. 2011, 2, 161–166. [Google Scholar]
- Da-Col, J.A.; Domene, S.M.A.; Pereira-Filho, E.R. Fast determination of Cd, Fe, Pb, and Zn in food using AAS. Food Anal. Methods 2009, 2, 110–115. [Google Scholar] [CrossRef]
- Honeychurch, K.C. Underpotential deposition of lead at silver electrodes manufactured from compact discs and its determination in environmental water samples. Adv. Anal. Chem. 2013, 3, 28–33. [Google Scholar]
- Gich, M.; Fernández-Sánchez, C.; Cotet, L.C.; Niu, P.; Roig, A. Facile synthesis of porous bismuth-carbon nanocomposites for the sensitive detection of heavy metals. J. Mater. Chem. A 2013, 1, 11410–11418. [Google Scholar] [CrossRef]
- Zhao, G.; Yin, Y.; Wang, H.; Liu, G.; Wang, Z. Sensitive stripping voltammetric determination of Cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode. Electrochim. Acta 2016, 220, 267–275. [Google Scholar] [CrossRef]
- Švancara, I.; Prior, C.; Hočevar, S.B.; Wang, J. A Decade with Bismuth-Based Electrodes in Electroanalysis. Electroanalysis 2010, 22, 1405–1420. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Liu, G. Sensitive determination of trace Cd(II) and Pb(II) In soil by an improved stripping voltammetry method using two different in situ plated bismuth-film electrodes based on a novel electrochemical measurement system. RSC Adv. 2018, 8, 5079–5089. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Liu, G. Interference effects of Cu(II) and Pb(II) On the stripping voltammetric detection of Cd(II): Improvement in the detection precision and interference correction. J. Electrochem. Soc. 2018, 165, H488. [Google Scholar] [CrossRef]
- Sosa, V.; Serrano, N.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Sputtered bismuth screen-printed electrode: A promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater. Talanta 2014, 119, 348–352. [Google Scholar] [CrossRef]
- Zidarič, T. Multi-pulse galvanostatic preparation of nanostructured bismuth film electrode for trace metal detection. Sens. Actuators B Chem. 2017, 245, 720–725. [Google Scholar] [CrossRef]
- Fort, C.I.; Cotet, L.C.; Vulpoi, A.; Turdean, G.L.; Danciu, V.; Baia, L.; Popescu, I.C. Bismuth doped carbon xerogel nanocomposite incorporated in chitosan matrix for ultrasensitive voltammetric detection of Pb(II) and Cd(II). Sens. Actuators B Chem. 2015, 220, 712–719. [Google Scholar] [CrossRef]
- Serrano, N.; Alberich, A.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Coating methods, modifiers and applications of bismuth screen-printed electrodes. TrAC Trends Anal. Chem. 2013, 46, 15–29. [Google Scholar] [CrossRef]
- Economou, A. Bismuth-film electrodes: Recent developments and potentialities for electroanalysis. TrAC Trends Anal. Chem. 2005, 24, 334–340. [Google Scholar] [CrossRef]
- Kadara, R.O.; Jenkinson, N.; Banks, C.E. Disposable bismuth oxide screen printed electrodes for the high throughput screening of heavy metals. Electroanalysis 2009, 21, 2410–2414. [Google Scholar] [CrossRef]
- Kefala, G.; Economou, A. Polymer-coated bismuth film electrodes for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry. Anal. Chim. Acta 2006, 576, 283–289. [Google Scholar] [CrossRef]
- Marinho, J.Z.; Silva, R.A.B.; Barbosa, T.G.G.; Richter, E.M.; Munoz, R.A.A.; Lima, R.C. Graphite-Composite Electrodes Bulk-Modified with (BiO)2CO3 and Bi2O3 Plates-Like Nanostructures for Trace Metal Determination by Anodic Stripping Voltammetry. Electroanalysis 2013, 25, 765–770. [Google Scholar] [CrossRef]
- Sopha, H.; Baldrianová, L.; Tesařová, E.; Grincienė, G.; Weidlich, T.; Švancara, I.; Hočevar, S.B. A New Type of Bismuth Electrode for Electrochemical Stripping Analysis Based on the Ammonium Tetrafluorobismuthate Bulk-Modified Carbon Paste. Electroanalysis 2010, 22, 1489–1493. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Sedki, M.; Mohamed, M.B.; Fawzy, M.; Abdelrehim, D.A.; Abdel-Mottaleb, M.M.S.A. Phytosynthesis of silver-reduced graphene oxide (Ag-RGO) nanocomposite with an enhanced antibacterial effect using Potamogeton pectinatus extract. RSC Adv. 2015, 5, 17358–17365. [Google Scholar] [CrossRef]
- Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef]
- de Lopes, C.C.A.; Limirio, P.H.J.O.; Novais, V.R.; Dechichi, P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl. Spectrosc. Rev. 2018, 53, 747–769. [Google Scholar] [CrossRef]
- Kumar, R.; Xu, C.; Scott, K. Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. RSC Adv. 2012, 2, 8777–8782. [Google Scholar] [CrossRef]
- Abdolhosseinzadeh, S.; Asgharzadeh, H.; Kim, H.S. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 2015, 5, 10160. [Google Scholar] [CrossRef] [Green Version]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y. 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Dong, F.; Lee, S.C.; Wu, Z.; Huang, Y.; Fu, M.; Ho, W.K.; Zou, S.; Wang, B. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: One-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. J. Hazard. Mater. 2011, 195, 346–354. [Google Scholar] [CrossRef]
- Li, Z.Q.; Lu, C.J.; Xia, Z.P.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon N. Y. 2007, 45, 1686–1695. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Hunt, M.R.; Charles, A.; Tang, J.; Bretcanu, O.; Walker, D.; Hassan, K.T.; Sun, Y.; Šiller, L. Synthesis and characterisation of reduced graphene oxide/bismuth composite for electrodes in electrochemical energy storage devices. ChemSusChem 2017, 10, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Zhao, N.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Effect of different solvent ratio (ethylene glycol/water) on the preparation of Pt/C catalyst and its activity toward oxygen reduction reaction. RSC Adv. 2015, 70, 56570–56577. [Google Scholar] [CrossRef]
- García-Cortés, J.M.; Pérez-Ramírez, J.; Illan-Gomez, M.J.; de Lecea, C.S.M. Activation by sintering of Pt-beta catalysts in deNOx HC-SCR. Structure—Activity relationships. Catal. Commun. 2003, 4, 165–170. [Google Scholar] [CrossRef]
- Wang, R.; Sun, P.; Wang, H.; Wang, X. Hierarchical molybdenum carbide/N-doped carbon as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution. Int. J. Hydrog. Energy 2018, 43, 17244–17251. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Samuel, S.; Singh, R.N.; Poillerat, G.; Koenig, J.F.; Chartier, P. Active thin NiCo2O4 film prepared on nickel by spray pyrolysis for oxygen evolution. Int. J. Hydrog. Energy 1995, 20, 9–15. [Google Scholar] [CrossRef]
- Chi, B.; Lin, H.; Li, J. Cations distribution of CuxCo3−xO4 and its electrocatalytic activities for oxygen evolution reaction. Int. J. Hydrog. Energy 2008, 33, 4763–4768. [Google Scholar] [CrossRef]
- Chi, B.; Lin, H.; Li, J.; Wang, N.; Yang, J. Comparison of three preparation methods of NiCo2O4 electrodes. Int. J. Hydrog. Energy 2006, 31, 1210–1214. [Google Scholar] [CrossRef]
- Hammond, C.R. The Elements, CRC Handbook of Chemistry and Physics; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 4–25. [Google Scholar]
- Adams, D.M.; Brus, L.; Chidsey, C.E.; Creager, S.; Creutz, C.; Kagan, C.R.; Kamat, P.V.; Lieberman, M.; Lindsay, S.; Marcus, R.A.; et al. Charge transfer on the nanoscale: Current status. J. Phys. Chem. B 2003, 107, 6668–6697. [Google Scholar] [CrossRef]
- Sun, Y.F.; Li, P.H.; Yang, M.; Huang, X.J. Highly sensitive electrochemical detection of Pb(II) based on excellent adsorption and surface Ni(II)/Ni(III) cycle of porous flower-like NiO/rGO nanocomposite. Sens. Actuators B Chem. 2019, 292, 136–147. [Google Scholar] [CrossRef]
- Duan, S.; Huang, Y. Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. J. Electroanal. Chem. 2017, 807, 253–260. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Su, Y.; Mu, W.; Han, X. Simultaneous detection of trace Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry using a bismuth oxycarbide/nafion electrode. Inorg. Chem. Commun. 2020, 111, 107672. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, H.; Zhou, S.; Song, T.; Wang, H.; Li, S.; Gan, W.; Yuan, Q. Simultaneous detection of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim. Acta 2014, 143, 143–151. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Castaneda, M.T.; Perez, B.; Pumera, M.; Del Valle, M.; Merkoçi, A.; Alegret, S. Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor. Analyst 2005, 130, 971–976. [Google Scholar]
- Hočevar, S.B.; Švancara, I.; Vytřas, K.; Ogorevc, B. Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder. Electrochim. Acta 2005, 51, 706–710. [Google Scholar] [CrossRef]
- Hwang, G.-H.; Han, W.-K.; Park, J.-S.; Kang, S.-G. An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium. Sens. Actuators B Chem. 2008, 135, 309–316. [Google Scholar] [CrossRef]
- Hwang, G.-H.; Han, W.-K.; Hong, S.-J.; Park, J.-S.; Kang, S.-G. Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode. Talanta 2009, 77, 1432–1436. [Google Scholar] [CrossRef]
Electrodes | Technique | Linear Range (μg/L) | Detection Limit (μg/L) | Reference | ||
---|---|---|---|---|---|---|
Pb(II) | Cd(II) | Pb(II) | Cd(II) | |||
(BiO)2CO3-modified GCE | SWASV | 4–150 | 2–125 | 1.15 | 0.65 | [25] |
Bi(NO3)3 salt into GEC | SWASV | 20–80 | 10–40 | 11.81 | 7.23 | [50] |
Bi-powder modified CPE | SWASV | 10–100 | 10–100 | 0.9 | 1.2 | [51] |
Bi2O3/SPE | SWASV | 20–100 | 20–100 | 2.3 | 1.5 | [52] |
BiF4-CPE | SWASV | 20–100 | 20–100 | 1.2 | 9.8 | [26] |
Bi-GC composite electrode | SWASV | 1–100 | 1–100 | 0.41 | 0.49 | [53] |
In-situ BiSPCE | DPASV | 0.83–23.3 | 1.35–14.5 | 0.25 | 0.4 | [18] |
(BiO)2CO3-rGO-Nafion/GCE | SWASV | 1–60 | 1–60 | 0.16 | 0.24 | This work |
Sample No. | Found a (μg/L) | Added (μg/L) | Detected After Adding a (μg/L) | Mean Recovery (%) | ||||
---|---|---|---|---|---|---|---|---|
Cd(II) | Pb(II) | Cd(II) | Pb(II) | Cd(II) | Pb(II) | Cd(II) | Pb(II) | |
1 | 4.85 ± 1.18 | 9.91 ± 1.12 | 5 | 10 | 9.79 ± 1.16 | 20.22 ± 1.09 | 98.8 | 103.1 |
2 | 3.96 ± 0.95 | 9.07 ± 1.25 | 10 | 15 | 14.16 ± 1.13 | 23.89 ± 1.12 | 102 | 98.8 |
3 | 3.12 ± 1.06 | 7.98 ± 1.30 | 15 | 20 | 18.19 ± 1.22 | 27.59 ± 0.98 | 100.47 | 98.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Sedki, M.; Ma, S.; Villarreal, C.; Mulchandani, A.; Jassby, D. Bismuth Subcarbonate Decorated Reduced Graphene Oxide Nanocomposite for the Sensitive Stripping Voltammetry Analysis of Pb(II) and Cd(II) in Water. Sensors 2020, 20, 6085. https://doi.org/10.3390/s20216085
Zhao G, Sedki M, Ma S, Villarreal C, Mulchandani A, Jassby D. Bismuth Subcarbonate Decorated Reduced Graphene Oxide Nanocomposite for the Sensitive Stripping Voltammetry Analysis of Pb(II) and Cd(II) in Water. Sensors. 2020; 20(21):6085. https://doi.org/10.3390/s20216085
Chicago/Turabian StyleZhao, Guo, Mohammed Sedki, Shengcun Ma, Claudia Villarreal, Ashok Mulchandani, and David Jassby. 2020. "Bismuth Subcarbonate Decorated Reduced Graphene Oxide Nanocomposite for the Sensitive Stripping Voltammetry Analysis of Pb(II) and Cd(II) in Water" Sensors 20, no. 21: 6085. https://doi.org/10.3390/s20216085
APA StyleZhao, G., Sedki, M., Ma, S., Villarreal, C., Mulchandani, A., & Jassby, D. (2020). Bismuth Subcarbonate Decorated Reduced Graphene Oxide Nanocomposite for the Sensitive Stripping Voltammetry Analysis of Pb(II) and Cd(II) in Water. Sensors, 20(21), 6085. https://doi.org/10.3390/s20216085