A Multi-Node Magnetic Positioning System with a Distributed Data Acquisition Architecture
Abstract
:1. Introduction
2. Description of the System
2.1. Measurement Principle
2.2. System Features
2.3. Principle of Operation
2.4. System Calibration
2.5. Coils and Alternating Voltage Supply
2.5.1. The TX Circuit
2.5.2. The RX Circuit
2.5.3. System Frequency Response
2.5.4. Driving the TX
2.6. Functional Scheme
2.7. Control and Optimization Software
2.8. FDMA and Band-Pass Sampling
2.9. Microcontroller Programming
2.9.1. SPI Communication
2.9.2. Signal Acquisition and Processing
2.10. Slave Boards
3. Testing the Magnetic Positioning System
3.1. Calibration and Measurement
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Inductor and Resistance Models for RX Solenoids
References
- Pasku, V.; De Angelis, A.; De Angelis, G.; Arumugam, D.D.; Dionigi, M.; Carbone, P.; Moschitta, A.; Ricketts, D.S. Magnetic Field-Based Positioning Systems. IEEE Commun. Surv. Tutor. 2017, 19, 2003–2017. [Google Scholar] [CrossRef]
- Lee, S.; Lee, N.; Ahn, J.; Kim, J.; Moon, B.; Jung, S.H.; Han, D. Construction of an indoor positioning system for home IoT applications. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- Macagnano, D.; Destino, G.; Abreu, G. Indoor positioning: A key enabling technology for IoT applications. In Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 117–118. [Google Scholar]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Luo, R.C.; Hsiao, T.J. Dynamic Wireless Indoor Localization Incorporating with an Autonomous Mobile Robot Based on an Adaptive Signal Model Fingerprinting Approach. IEEE Trans. Ind. Electron. 2019, 66, 1940–1951. [Google Scholar] [CrossRef]
- Li, L.; Guo, X.; Ansari, N. SmartLoc: Smart Wireless Indoor Localization Empowered by Machine Learning. IEEE Trans. Ind. Electron. 2020, 67, 6883–6893. [Google Scholar] [CrossRef]
- Mateen, H.; Basar, R.; Ahmed, A.U.; Ahmad, M.Y. Localization of wireless capsule endoscope: A systematic review. IEEE Sens. J. 2017, 17, 1197–1206. [Google Scholar] [CrossRef]
- Basar, M.R.; Ahmad, M.Y.; Cho, J.; Ibrahim, F. An Improved Wearable Resonant Wireless Power Transfer System for Biomedical Capsule Endoscope. IEEE Trans. Ind. Electron. 2018, 65, 7772–7781. [Google Scholar] [CrossRef]
- Pasku, V.; Angelis, A.D.; Dionigi, M.; Angelis, G.D.; Moschitta, A.; Carbone, P. A Positioning System Based on Low-Frequency Magnetic Fields. IEEE Trans. Ind. Electron. 2016, 63, 2457–2468. [Google Scholar] [CrossRef]
- Ralchenko, M.; Roper, M. VLF Magnetic Positioning in Multistory Parking Garages. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–8. [Google Scholar]
- Hehn, M.; Sippel, E.; Carlowitz, C.; Vossiek, M. High-Accuracy Localization and Calibration for 5-DoF Indoor Magnetic Positioning Systems. IEEE Trans. Instrum. Meas. 2019, 68, 4135–4145. [Google Scholar] [CrossRef]
- Santoni, F.; Angelis, A.D.; Skog, I.; Moschitta, A.; Carbone, P. Calibration and Characterization of a Magnetic Positioning System Using a Robotic Arm. IEEE Trans. Instrum. Meas. 2019, 68, 1494–1502. [Google Scholar] [CrossRef]
- Dai, H.; Song, S.; Hu, C.; Sun, B.; Lin, Z. A Novel 6-D Tracking Method by Fusion of 5-D Magnetic Tracking and 3-D Inertial Sensing. IEEE Sens. J. 2018, 18, 9640–9648. [Google Scholar] [CrossRef]
- Plotkin, A.; Paperno, E. 3-D magnetic tracking of a single subminiature coil with a large 2-D array of uniaxial transmitters. IEEE Trans. Magn. 2003, 39, 3295–3297. [Google Scholar] [CrossRef]
- Lin, Z.; Xiong, Y.; Cai, G.; Dai, H.; Xia, X.; Tan, Y.; Lueth, T.C. Quantification of Parkinsonian Bradykinesia Based on Axis-Angle Representation and SVM Multiclass Classification Method. IEEE Access 2018, 6, 26895–26903. [Google Scholar] [CrossRef]
- Ferrigno, L.; Miele, G.; Milano, F.; Rodio, A.; Santoni, F.; De Angelis, A.; Moschitta, A.; Carbone, P.; Cerro, G. A real-time tracking system for tremor and trajectory estimation in Parkinson’s disease affected patients. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–6. [Google Scholar]
- Fahn, C.-S.; Sun, H. Development of a data glove with reducing sensors based on magnetic induction. IEEE Trans. Ind. Electron. 2005, 52, 585–594. [Google Scholar] [CrossRef]
- Fahn, C.-S.; Sun, H. Development of a Fingertip Glove Equipped with Magnetic Tracking Sensors. Sensors 2010, 10, 1119–1140. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, S.; Clemente, F.; Simone, A.D.; Cipriani, C. Feasibility of Tracking Multiple Implanted Magnets with a Myokinetic Control Interface: Simulation and Experimental Evidence Based on the Point Dipole Model. IEEE Trans. Biomed. Eng. 2020, 67, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Psiuk, R.; Müller, A.; Dräger, T.; Ibrahim, I.; Brauer, H.; Töpfer, H.; Heuberger, A. Simultaneous 2D localization of multiple coils in an LF magnetic field using orthogonal codes. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar]
- Moschitta, A.; Comuniello, A.; Santoni, F.; Angelis, A.D.; Carbone, P.; Fravolini, M.L. Simultaneous amplitude measurement of multiple Chirp Spread Spectrum signals. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Angelis, G.D.; Angelis, A.D.; Comuniello, A.; Moschitta, A.; Carbone, P. Simultaneous RSS Measurements Using Multiple Inductively Coupled Coils. In Proceedings of the 2019 IEEE International Symposium on Measurements & Networking (M & N), Catania, Italy, 8–10 July 2019; pp. 1–6. [Google Scholar]
- Moschitta, A.; Angelis, A.D.; Santoni, F.; Dionigi, M.; Carbone, P.; Angelis, G.D. Estimation of the Magnetic Dipole Moment of a Coil Using AC Voltage Measurements. IEEE Trans. Instrum. Meas. 2018, 67, 2495–2503. [Google Scholar] [CrossRef]
- Dionigi, M.; Angelis, G.D.; Moschitta, A.; Mongiardo, M.; Carbone, P. A Simple Ranging System Based on Mutually Coupled Resonating Circuits. IEEE Trans. Instrum. Meas. 2014, 63, 1215–1223. [Google Scholar] [CrossRef]
- Angelis, G.D.; Angelis, A.D.; Moschitta, A.; Carbone, P. Comparison of Measurement Models for 3D Magnetic Localization and Tracking. Sensors 2017, 17, 2527. [Google Scholar] [CrossRef] [Green Version]
- Kortier, H.G.; Sluiter, V.I.; Roetenberg, D.; Veltink, P.H. Assessment of hand kinematics using inertial and magnetic sensors. J. Neuroeng. Rehabil. 2014, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Bellitti, P.; De Angelis, A.; Dionigi, M.; Sardini, E.; Serpelloni, M.; Moschitta, A.; Carbone, P. A Wearable and Wirelessly Powered System for Multiple Finger Tracking. IEEE Trans. Instrum. Meas. 2020, 69, 2542–2551. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Zaidan, B.B.; Zaidan, A.A.; Salih, M.M.; Lakulu, M.M. A Review on Systems-Based Sensory Gloves for Sign Language Recognition State of the Art between 2007 and 2017. Sensors 2018, 18, 2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoni, F.; Angelis, A.D.; Moschitta, A.; Carbone, P. A Distributed Data Acquisition Architecture for Magnetic Positioning Systems. In Proceedings of the 2018 IEEE International Systems Engineering Symposium (ISSE), Rome, Italy, 1–3 October 2018; pp. 1–6. [Google Scholar]
- Skog, I.; Jalden, J.; Nilsson, J.O.; Gustafsson, F. Position and Orientation Estimation of a Permanent Magnet Using a Small-Scale Sensor Array. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018. [Google Scholar]
- Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering, 4th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Dobot Magician User Manual and Dobot Magician API Description. Available online: www.dobot.cc/downloadcenter.html (accessed on 20 October 2020).
- Lyons, R.G. Understanding Digital Signal Processing, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- D’Antona, G.; Ferrero, A. Digital Signal Processing for Measurement Systems. Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Texas Instruments Delfino TMS320F2837xD Microcontroller Datasheet SPRS880J. Available online: www.ti.com/lit/ds/symlink/tms320f28379d.pdf (accessed on 20 October 2020).
- Texas Instruments FPU DSP Software Library User’s Guide. Available online: dev.ti.com/tirex/content/C2000Ware_3_01_00_00_Software/libraries/dsp/FPU/c28/docs/FPU_SW_LIB_UG.pdf (accessed on 20 March 2020).
- Warren, H.S., Jr. Hacker’s Delight, 2nd ed.; Addison-Wesley: Boston, MA, USA, 2012. [Google Scholar]
- Kazimierczuk, M.K. High-Frequency Magnetic Components, 2nd ed.; Equation 5.293; Wiley: Hoboken, NJ, USA, 2014; p. 327. [Google Scholar]
- Nan, X.; Sullivan, C.R. An improved calculation of proximity-effect loss in high-frequency windings of round conductors. In Proceedings of the IEEE 34th Annual Conference on Power Electronics Specialist (PESC ’03), Acapulco, Mexico, 15–19 June 2003; Volume 2, pp. 853–860. [Google Scholar]
- Kaymak, M.; Shen, Z.; Doncker, R.W.D. Comparison of analytical methods for calculating the AC resistance and leakage inductance of medium-frequency transformers. In Proceedings of the 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 27–30 June 2016; pp. 1–8. [Google Scholar]
TX Freqs [Hz] | Selected TXs | |||||
---|---|---|---|---|---|---|
176,296 | X | X | ||||
178,259 | X | X | X | |||
180,266 | X | X | X | X | X | |
182,319 | X | X | X | X | X | X |
184,420 | X | X | X | X | ||
186,569 | X | |||||
PSoC supply [V] | 3.3 | 3.3 | 3.3 | 2.7 | 2.7 | 2.5 |
Configuration: | 1-TX | 2-TXs | 3-TXs | 4-TXs | 5-TXs | 6-TXs |
Meas. rate: | 124 | 83 | 83 | 83 | 62 | 62 |
50% | 75% | 95% | 99% | 100% | |
---|---|---|---|---|---|
1 TX | 2.9 | 3.9 | 5.9 | 7.7 | 11.7 |
2 TXs | 3.1 | 4.6 | 6.9 | 8.6 | 13.1 |
3 TXs | 3.0 | 4.6 | 7.1 | 9.0 | 14.1 |
4 TXs | 3.1 | 4.8 | 8.0 | 10.5 | 15.5 |
5 TXs | 3.0 | 4.4 | 7.0 | 8.7 | 14.0 |
6 TXs | 3.1 | 4.5 | 7.1 | 9.0 | 13.8 |
Tot: | 3.1 | 4.5 | 7.2 | 9.3 | 15.5 |
50% | 75% | 95% | 99% | 100% | |
---|---|---|---|---|---|
1 TX | 1.9 | 2.6 | 3.8 | 5.4 | 7.2 |
2 TXs | 2.3 | 3.2 | 5.1 | 7.1 | 9.0 |
3 TXs | 2.7 | 4.0 | 5.7 | 7.1 | 9.9 |
4 TXs | 2.3 | 3.3 | 5.9 | 7.9 | 11.4 |
5 TXs | 2.3 | 3.4 | 5.5 | 6.6 | 8.6 |
6 TXs | 2.3 | 3.4 | 5.6 | 6.9 | 9.2 |
Tot: | 2.4 | 3.4 | 5.6 | 7.0 | 11.4 |
50% | 75% | 95% | 99% | 100% | |
---|---|---|---|---|---|
2.4 | 3.3 | 5.3 | 7.0 | 10.4 | |
3.1 | 4.7 | 7.3 | 9.5 | 15.5 | |
3.7 | 5.2 | 7.6 | 9.3 | 13.3 |
50% | 75% | 95% | 99% | 100% | |
---|---|---|---|---|---|
2.7 | 3.8 | 5.9 | 7.1 | 10.2 | |
2.3 | 3.4 | 5.6 | 7.2 | 11.4 | |
1.9 | 3.0 | 4.9 | 6.0 | 8.2 |
1 TX (3.3 V) | 6 TX (2.5 V) | |
---|---|---|
(dB) | 20.0 | 18.9 |
(dB) | 13.4 | 13.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoni, F.; De Angelis, A.; Moschitta, A.; Carbone, P. A Multi-Node Magnetic Positioning System with a Distributed Data Acquisition Architecture. Sensors 2020, 20, 6210. https://doi.org/10.3390/s20216210
Santoni F, De Angelis A, Moschitta A, Carbone P. A Multi-Node Magnetic Positioning System with a Distributed Data Acquisition Architecture. Sensors. 2020; 20(21):6210. https://doi.org/10.3390/s20216210
Chicago/Turabian StyleSantoni, Francesco, Alessio De Angelis, Antonio Moschitta, and Paolo Carbone. 2020. "A Multi-Node Magnetic Positioning System with a Distributed Data Acquisition Architecture" Sensors 20, no. 21: 6210. https://doi.org/10.3390/s20216210
APA StyleSantoni, F., De Angelis, A., Moschitta, A., & Carbone, P. (2020). A Multi-Node Magnetic Positioning System with a Distributed Data Acquisition Architecture. Sensors, 20(21), 6210. https://doi.org/10.3390/s20216210