An Automated Pipeline for Image Processing and Data Treatment to Track Activity Rhythms of Paragorgia arborea in Relation to Hydrographic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Lofoten-Vesterålen (LoVe) Ocean Observatory
2.2. The Monitored Soft Coral Species
2.3. Image and Oceanographic Data Collection
2.4. Image Treatment
2.4.1. Image Enhancement
2.4.2. Supervised Tagging of Coral Areas
2.4.3. Coral Segmentation
2.4.4. Data Preparation
2.4.5. The Convolutional Neural Network (CNN) Model
2.4.6. The Segmentation of Coral Behavioral Statuses by CNN Modelling
2.5. Behavioral and Environmental Time Series Compilation
2.6. Time Series Analysis
2.7. Multivariate Modeling of Coral Activity
3. Results
3.1. CNN Coral Segmentation: Evaluation of Training and Performance
3.2. Time Series Analysis
3.3. Multivariate Modeling of Coral Activity
4. Discussion
4.1. Implications of a CNN-Based Pipeline for Ecological Information Treatment at Cabled Observatories
4.2. Functional Explanation of the Detected P. arborea Polyps’ Extrusion and Retraction Rhythms
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Danovaro, R.; Aguzzi, J.; Fanelli, E.; Billet, D.; Gjerde, K.; Jamieson, A.; Ramirez-Llodra, E.; Smith, C.R.; Snelgrove, P.V.R.; Thomsen, L.; et al. A new international ecosystem-based strategy for the global deep ocean. Science 2017, 355, 452–454.3. [Google Scholar] [CrossRef] [PubMed]
- Thurber, A.R.; Sweetman, A.K.; Narayanaswamy, B.E.; Jones, D.O.; Ingels, J.; Hansman, R. Ecosystem function and services provided by the deep sea. Biogeosciences 2014, 11, 3941–3963. [Google Scholar] [CrossRef] [Green Version]
- Danovaro, R.; Fanelli, E.; Aguzzi, J.; Billett, D.; Carugati, L.; Corinaldesi, C.; Dell’Anno, A.; Gjerde, K.; Jamieson, A.J.; Kark, S.; et al. Ecological indicators for an integrated global deep-ocean strategy. Nat. Ecol. Evol. 2020, 4, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Aguzzi, J.; Chatzievangelou, D.; Marini, S.; Fanelli, E.; Danovaro, R.; Flögel, S.; Lebris, N.; Juanes, F.; De Leo, F.C.; Del Rio, J.; et al. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environ. Sci. Technol. 2019, 53, 6616–6631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguzzi, J.; Albiez, J.; Flögel, S.; Godø, O.R.; Grimsbø, E.; Marini, S.; Pfannkuche, O.; Rodriguez, E.; Thomsen, L.; Torkelsen, T.; et al. A Flexible autonomous robotic observatory infrastructure for bentho-pelagic monitoring. Sensors 2020, 20, 1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rountree, R.A.; Aguzzi, J.; Marini, S.; Fanelli, E.; De Leo, F.C.; del Río Fernandez, J.; Juanes, F. Towards an optimal design for ecosystem-level ocean observatories. Oceanog. Mar. Biol. Ann. Rev. 2020, 58, 79–106. [Google Scholar]
- Seibel, B.A.; Drazen, J.C. The rate of metabolism in marine animals: Environmental constraints, ecological demands and energetic opportunities. Philos. Trans. R. Soc. B 2007, 362, 2061–2078. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.-J.; Kemp, K.; Mattheus, U.; Priede, I. Rhythms at the bottom of the deep sea: Cyclic current flow changes and melatonin patterns in two species of demersal fish. Deep Sea Res. I 2007, 54, 1944–1956. [Google Scholar] [CrossRef]
- Naylor, E. Chronobiology of Marine Organisms; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Aguzzi, J.; Company, J.B. Chronobiology of deep-water decapod crustaceans on continental margins. Adv. Mar. Biol. 2010, 58, 155–225. [Google Scholar]
- Aguzzi, J.; Costa, C.; Menesatti, P.; García, J.A.; Bahamon, N.; Puig, P.; Sarda, F. Activity rhythms in the deep-sea: A chronobiological approach. Front. Biosci. Landmark 2011, 16, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Aguzzi, J.; Costa, C.; Matabos, M.; Azzurro, E.; Lázaro, A.; Menesatti, P.; Sardà, F.; Canals, M.; Delory, E.; Cline, D.; et al. Challenges to the assessment of benthic populations and biodiversity as a result of rhythmic behaviour: Video solutions from cabled observatories. Oceanog. Mar. Biol. Ann. Rev. 2012, 50, 235–286. [Google Scholar]
- Aguzzi, J.; Fanelli, E.; Ciuffardi, T.; Schirone, A.; Craig, G.; the KM3NeT Consortium. Inertial bioluminescence rhythms at the Central Mediterranean KM3NeT deep-sea neutrino telescope. Sci. Rep. 2017, 7, 44938. [Google Scholar] [CrossRef] [Green Version]
- Hays, G.C.; Ferreira, L.C.; Sequeira, A.M.; Meekan, M.G.; Duarte, C.M.; Bailey, H.; Bailleul, F.; Bowen, W.D.; Caley, M.J.; Costa, D.P.; et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 2016, 31, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Milligan, R.; Scott, E.; Jones, D.; Bett, B.; Jamieson, A.; O’Brien, R.; Costa, S.P.; Rowe, G.; Ruhl, H.; Smith, K.; et al. Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic? J. Anim. Ecol. 2020, in press. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguzzi, J.; Fanelli, E.; Ciuffardi, T.; Schirone, A.; De Leo, F.C.; Doya, C.; Kawato, M.; Miyazaki, M.; Furushima, Y.; Costa, C.; et al. Faunal activity rhythms influencing early community succession of an implanted whale carcass offshore in Sagami Bay, Japan. Sci. Rep. 2018, 8, 11163. [Google Scholar] [CrossRef] [Green Version]
- De Leo, F.C.; Ogata, B.; Sastri, A.R.; Heesemann, M.; Mihály, S.; Galbraith, M.; Morley, M.G. High-frequency observations from a deep-sea cabled observatory reveal seasonal overwintering of Neocalanus spp. in Barkley Canyon, NE Pacific: Insights into particulate organic carbon flux. Prog. Oceanogr. 2018, 169, 120–137. [Google Scholar] [CrossRef] [Green Version]
- Tsounis, G.; Orejas, C.; Reynaud, S.; Gili, J.M.; Allemand, D.; Ferrier-Pagès, C. Prey-capture rates in four Mediterranean cold water corals. Mar. Ecol. Prog. Ser. 2010, 398, 149–155. [Google Scholar] [CrossRef]
- Boolukos, C.M.; Lim, A.; O’Riordan, R.M.; Wheeler, A.J. Cold-water corals in decline: A temporal (4 year) species abundance and biodiversity appraisal of complete photomosaiced cold-water coral reef on the Irish Margin. Deep Sea Res. I 2019, 146, 44–54. [Google Scholar] [CrossRef]
- Bøe, R.; Bellec, V.K.; Dolan, M.F.J.; Buhl-Mortensen, P.; Buhl-Mortensen, L.; Slagstad, D.; Rise, L. Giant sandwaves in the Hola glacial trough off Vesterålen, North Norway. Mar. Geol. 2009, 267, 36–54. [Google Scholar] [CrossRef]
- Osterloff, J.; Nilssen, I.; Järnegren, J.; Van Engeland, T.; Buhl-Mortensen, P.; Nattkemper, T.W. Computer vision enables short-and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Sci. Rep. 2020, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.A.C.C.; Cruz, I.C.S.; Nunes, A.; Pinheiro, T.H. Speeding up coral reef conservation with AI-aided automated image analysis. Nat. Mach. Intell. 2020, 2, 292. [Google Scholar] [CrossRef]
- Johanson, A.N.; Flögel, S.; Dullo, W.-C.; Linke, P.; Hasselbring, W. Modeling polyp activity of Paragorgia arborea using supervised learning. Ecol. Informat. 2017, 39, 109–118. [Google Scholar] [CrossRef]
- Aguzzi, J.; Chatzievangelou, D.; Francescangeli, M.; Marini, S.; Bonofiglio, F.; del Río, J.; Danovaro, R. The hierarchic treatment of marine ecological information from spatial networks of benthic platforms. Sensors 2020, 20, 1751. [Google Scholar] [CrossRef] [Green Version]
- Aguzzi, J.; Doya, C.; Tecchio, S.; De Leo, F.L.; Azzurro, E.; Costa, C.; Sbragaglia, V.; Del Río, J.; Navarro, J.; Ruhl, H.A.; et al. Coastal observatories for monitoring of fish behaviour and their responses to environmental changes. Rev. Fish Biol. Fisher. 2015, 25, 463–483. [Google Scholar] [CrossRef] [Green Version]
- Cuvelier, D.; de Busserolles, F.; Lavaud, R.; Floc’h, E.; Fabri, M.-C.; Sarradin, P.-M.; Sarrazin, J. Biological data extraction from imagery: How far can we go? A case study from the Mid-Atlantic Ridge. Mar. Environ. Res. 2012, 82, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Corgnati, L.; Marini, S.; Mazzei, L.; Ottaviani, E.; Aliani, S.; Conversi, A.; Griffa, A. Looking inside the ocean: Toward an autonomous imaging system for monitoring gelatinous zooplankton. Sensors 2016, 16, 2124. [Google Scholar] [CrossRef] [Green Version]
- Marini, S.; Fanelli, E.; Sbragaglia, V.; Azzurro, E.; Fernandez, J.D.R.; Aguzzi, J. Tracking fish abundance by underwater image recognition. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Vazquez, V.; Lopez-Guede, J.M.; Marini, S.; Fanelli, E.; Johnsen, E.; Aguzzi, J. Video image enhancement and machine learning pipeline for underwater animal detection and classification at cabled observatories. Sensors 2020, 20, 726. [Google Scholar] [CrossRef] [Green Version]
- Marini, S.; Corgnati, L.; Mantovani, C.; Bastianini, M.; Ottaviani, E.; Fanelli, E.; Aguzzi, J.; Griffa, A.; Poulain, P.-M. Automated estimate of fish abundance through the autonomous imaging device GUARD1. Measurement 2018, 126, 72–75. [Google Scholar] [CrossRef]
- Papworth, D.J.; Marini, S.; Conversi, A. A novel, unbiased analysis approach for investigating population dynamics: A case study on Calanus finmarchicus and its Decline in the North Sea. PLoS ONE 2020, 11, e0158230. [Google Scholar] [CrossRef]
- Auster, P.J. Are deep-water corals important habitats for fishes? In Cold-Water Corals and Ecosystems; Springer: Berlin/Heidelberg, Germany, 2005; pp. 747–760. [Google Scholar]
- Fosså, J.H.; Skjoldal, H.R. Conservation of Cold-Water Coral Reefs in Norway. In Handbook of Marine Fisheries Conservation and Management; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Bright-Diaz, L.M.; Strychar, K.B.; Shirley, T.C. Compounds from deep-sea bubblegum corals, Paragorgia arborea, elicit anti-predation behavior in fish. Open Mar. Biol. J. 2011, 5, 58–67. [Google Scholar]
- Roberts, J.M.; Wheeler, A.J.; Freiwald, A. Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 2006, 312, 543–547. [Google Scholar] [CrossRef] [Green Version]
- The Lofoten Vesterålen Ocean Observatory Website. Available online: https://love.equinor.com/ (accessed on 8 July 2020).
- Godø, O.R.; Johnsen, S.; Torkelsen, T. The LoVe Ocean Observatory is in Operation. Mar. Technol. Soc. J. 2014, 48, 24–30. [Google Scholar] [CrossRef]
- Osterloff, J.; Nilssen, I.; Nattkemper, T.W. A computer vision approach for monitoring the spatial and temporal shrimp distribution at the LoVe observatory. Methods Oceanog. 2016, 15, 114–128. [Google Scholar] [CrossRef]
- Purser, A. A time series study of Lophelia pertusa and reef megafauna responses to drill cuttings exposure on the Norwegian margin. PLoS ONE 2015, 10, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, S.; Shank, T.; Sánchez, J. Spatial and temporal patterns of genetic variation in the widespread antitropical deep-sea coral Paragorgia arborea. Mol. Ecol. 2012, 21, 6053–6067. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento, J.L.; Gruber, N. Ocean Biogeochemical Dynamics; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Tendal, O.S. The north Atlantic distribution of the octocoral Paragorgia arborea (L., 1758) (Cnidaria, Anthozoa). Sarsia 1992, 77, 213–217. [Google Scholar] [CrossRef]
- Buhl-Mortensen, L.; Olafsdottir, S.H.; Buhl-Mortensen, P.; Burgos, J.M.; Ragnarsson, S.A. Distribution of nine cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic: Effects of bathymetry and hydrography. Hydrobiologia 2015, 759, 39–61. [Google Scholar] [CrossRef]
- Watanabe, S.; Metaxas, A.; Sameoto, J.; Lawton, P. Patterns in abundance and size of two deep-water gorgonian octocorals, in relation to depth and substrate features off Nova Scotia. Deep Sea Res. I 2009, 56, 2235–2248. [Google Scholar] [CrossRef]
- Mortensen, P.B.; Buhl-Mortensen, L. Morphology and growth of the deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea. Mar. Biol. 2005, 147, 775–788. [Google Scholar] [CrossRef]
- Tong, R.; Purser, A.; Unnithan, V.; Guinan, J. Multivariate statistical analysis of distribution of deep-water gorgonian corals in relation to seabed topography on the Norwegian margin. PLoS ONE 2012, 7, e43534. [Google Scholar] [CrossRef]
- Bennecke, S.; Metaxas, A. Is substrate composition a suitable predictor for deep-water coral occurrence on fine scales? Deep Sea Res. I 2017, 124, 55–65. [Google Scholar] [CrossRef]
- Lundsten, L.; Barry, J.P.; Cailliet, G.M.; Clague, D.A.; DeVogelaere, A.P.; Geller, J.B. Benthic invertebrate communities on three seamounts off southern and central California, USA. Mar. Ecol. Prog. Ser. 2009, 374, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Brooke, S.; Watts, M.; Heil, A.; Rhode, M.; Mienis, F.; Duineveld, G.; Davies, A.; Ross, S. Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA. Deep Sea Res. II 2017, 137, 131–147. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.A. Systematics of the bubblegum corals (Cnidaria: Octocorallia: Paragorgiidae) with description of new species from New Zealand and the Eastern Pacific. Zootaxa 2005, 1014, 1–72. [Google Scholar] [CrossRef]
- Buhl-Mortensen, L.; Mortensen, P.B. Distribution and diversity of species associated with deep-sea gorgonian corals off Atlantic Canada. In Cold-water Corals and Ecosystems; Springer: Berlin/Heidelberg, Germany, 2005; pp. 849–879. [Google Scholar]
- De Clippele, L.; Buhl-Mortensen, P.; Buhl-Mortensen, L. Fauna associated with cold water gorgonians and sea pens. Cont. Shelf Res. 2015, 105, 67–78. [Google Scholar] [CrossRef]
- Krieger, K. Distribution and abundance of rockfish determined from a submersible and by bottom trawling. Fish. Bull. 1993, 91, 87–96. [Google Scholar]
- Sherwood, O.A.; Edinger, E.N. Ages and growth rates of some deep-sea gorgonian and antipatharian corals of Newfoundland and Labrador. Can. J. Fish. Aquat. Sci. 2009, 66, 142–152. [Google Scholar] [CrossRef]
- Bennecke, S.; Kwasnitschka, T.; Metaxas, A.; Dullo, W.-C. In situ growth rates of deep-water octocorals determined from 3D photogrammetric reconstructions. Coral Reefs 2016, 35, 1227–1239. [Google Scholar] [CrossRef]
- Purser, A.; Orejas, C.; Moje, A.; Thomsen, L. The influence of flow velocity and suspended particulate concentration on net prey capture rates by the scleractinian coral Balanophyllia europaea (Scleractinia: Dendrophylliidae). J. Mar. Biol. Assoc. UK 2014, 94, 687–696. [Google Scholar] [CrossRef]
- Bradbury, R.R.; Reichelt, R.R. Fractal dimension of a coral reef at ecological scales. Mar. Ecol. Prog. Ser. 1983, 10, 169–171. [Google Scholar] [CrossRef]
- Basillais, É. Coral surfaces and fractal dimensions: A new method. Comptes Rendus Académie Sci. Ser. III (Sci. Vie) 1997, 320, 653–657. [Google Scholar] [CrossRef]
- Martin-Garin, B.; Lathuilière, B.; Verrecchia, E.P.; Geister, J. Use of fractal dimensions to quantify coral shape. Coral Reefs 2007, 26, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J.; Backes, A.R.; Schubert, P.; Wilke, T. The power of 3D fractal dimensions for comparative shape and structural complexity analyses of irregularly shaped organisms. Methods Ecol. Evol. 2017, 8, 1650–1658. [Google Scholar] [CrossRef]
- George, E.E.; Mullinix, J.; Meng, F.; Bailey, B.; Edwards, C.; Felts, B.; Haas, A.; Hartmann, A.C.; Mueller, B.; Nulton, J.; et al. Relevance of coral geometry in the outcomes of the coral-algal benthic war. BioRxiv 2018, 327031. [Google Scholar] [CrossRef]
- Chen, T.-W.; Chen, Y.-L.; Chien, S.-Y. Fast image segmentation based on K-Means clustering with histograms in HSV color space. In Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing, Cairns, Australia, 8–10 October 2008; pp. 322–325. [Google Scholar]
- Huang, T.; Yang, G.; Tang, G. A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Sig. Proc. 1979, 27, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y. Available online: https://github.com/yuxi120407/Coral-reef-image-segmentation-and-classification (accessed on 8 July 2020).
- Alonso, I.; Cambra, A.; Muñoz, A.; Treibitz, T.; Murillo, A.C. Coral-segmentation: Training dense labeling models with sparse ground truth. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2874–2882. [Google Scholar]
- Cholltet, F. Available online: https://github.com/fchollet/keras (accessed on 8 July 2020).
- De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2015, 134, 19–67. [Google Scholar] [CrossRef]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Internat. Joint Conf. Artificial Intel. (IJCAI) 1995, 14, 1137–1145. [Google Scholar]
- Wang, S.; Chen, W.; Xie, S.M.; Azzari, G.; Lobell, D.B. Weakly supervised deep learning for segmentation of remote sensing imagery. Remote Sens. 2020, 12, 207. [Google Scholar] [CrossRef] [Green Version]
- Refinetti, R. Circadian Physiology; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Tsounis, G.; Rossi, S.; Laudien, J.; Bramanti, L.; Fernandez, N.; Gili, J.M.; Arntz, W. Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.). Mar. Biol. 2006, 149, 313–325. [Google Scholar] [CrossRef]
- Mossalam, A.; Arafa, M. Using Artificial Neural Networks (ANN) in projects monitoring dashboards’ formulation. HBRC J. 2017, 14, 385–392. [Google Scholar] [CrossRef]
- Proto, A.R.; Sperandio, G.; Costa, C.; Maesano, M.; Antonucci, F.; Macrì, G.; Scarascia, S.; Mugnozza, G.; Zimbalatti, G. A three-step neural network artificial intelligence modelling approach for time, productivity and costs prediction: A case study in Italian forestry. Croat. J. Forest Eng. 2020, 41, 35–47. [Google Scholar] [CrossRef]
- Mackay, D.J.C. Bayesian interpolation. Neural Computat. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Foresee, F.D.; Martin, T.H. Gauss-Newton approximation to Bayesian learning. In Proceedings of the International Joint Conference on Neural Networks (ICNN’97), Houston, TX, USA, 12 June 1997; Volume 3, pp. 1930–1935. [Google Scholar]
- Violino, S.; Ortenzi, L.; Antonucci, F.; Pallottino, F.; Benincasa, C.; Figorilli, S.; Costa, C. An open source IoT spectrometer for Italian EVOO traceability and origin assessment: An artificial intelligence approach. Foods 2020, in press. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Schettini, R.; Corchs, S. Underwater image processing: State of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bonin, F.; Burguera, A.; Oliver, G. Imaging systems for advanced underwater vehicles. J. Marit. Res. 2011, 8, 65–86. [Google Scholar]
- Lu, H.; Li, Y.; Zhang, Y.; Chen, M.; Serikawa, S.; Kim, H. Underwater optical image processing: A comprehensive review. Mob. Netw. Appl. 2017, 22, 1204–1211. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Serikawa, S. Computer vision for ocean observing. In Artificial Intelligence and Computer Vision; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–16. [Google Scholar]
- Chiang, J.Y.; Chen, Y.-C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2011, 21, 1756–1769. [Google Scholar] [CrossRef]
- Treibitz, T.; Schechner, Y.Y. Turbid scene enhancement using multi-directional illumination fusion. IEEE Trans. Image Process. 2012, 21, 4662–4667. [Google Scholar] [CrossRef]
- Peng, Y.-T.; Cosman, P.C. Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 2017, 26, 1579–1594. [Google Scholar] [CrossRef] [PubMed]
- Andono, P.N.; Purnama, I.; Hariadi, M. Underwater image enhancement using adaptive filtering for enhanced sift-based image matching. J. Theor. Appl. Inf. Technol. 2013, 51, 392–399. [Google Scholar]
- Lu, H.; Li, Y.; Zhang, L.; Serikawa, S. Contrast enhancement for images in turbid water. J. Opt. Soc. Am. 2015, 32, 886–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Proc. 2018, 27, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Schoening, T.; Bergmann, M.; Ontrup, J.; Taylor, J.; Dannheim, J.; Gutt, J.; Purser, A.; Nattkemper, T.W. Semi-automated image analysis for the assessment of megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN. PLoS ONE 2012, 7, e38179. [Google Scholar] [CrossRef] [Green Version]
- Bicknell, A.W.; Godley, B.J.; Sheehan, E.V.; Votier, S.C.; Witt, M.J. Camera technology for monitoring marine biodiversity and human impact. Front. Ecol. Environ. 2016, 14, 424–432. [Google Scholar] [CrossRef]
- Dai, J.; Wang, R.; Zheng, H.; Ji, G.; Qiao, X. ZooplanktoNet: Deep convolutional network for zooplankton classification. In Proceedings of the OCEANS 2016-Shanghai; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Qin, H.; Li, X.; Liang, J.; Peng, Y.; Zhang, C. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 2016, 187, 49–58. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern recognition and machine learning. In Information Science and Statistics; Springer: Secaucus, NJ, USA, 2006. [Google Scholar]
- Galar, M.; Fernández, A.; Barrenechea, E.; Bustince, H.; Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recog. 2011, 44, 1761–1776. [Google Scholar] [CrossRef]
- Dougherty, G. Pattern Recognition and Classification: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cruz, R.M.; Sabourin, R.; Cavalcanti, G.D. Dynamic classifier selection: Recent advances and perspectives. Inf. Fusion 2018, 41, 195–216. [Google Scholar] [CrossRef]
- Bell, J.J.; Shaw, C.; Turner, J.R. Factors controlling the tentacle and polyp expansion behaviour of selected temperate Anthozoa. J. Mar. Biol. Assoc. UK 2006, 86, 977. [Google Scholar] [CrossRef]
- Rossi, S.; Rizzo, L.; Duchêne, J.C. Polyp expansion of passive suspension feeders: A red coral case study. PeerJ 2019, 7, e7076. [Google Scholar] [CrossRef]
- Davies, A.J.; Duineveld, G.C.; Lavaleye, M.S.S.; Bergman, M.J.N.; van Haren, H.; Roberts, J.M. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanog. 2009, 54, 620–629. [Google Scholar] [CrossRef] [Green Version]
- Herring, P. The Biology of the Deep Ocean; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Belonenko, T.V.; Volkov, D.L.; Norden, Y.E.; Ozhigin, V.K. Water circulation in the Lofoten Basin of the Norwegian Sea. Vestn. St.-Peterbg. Univ. Ser. Geol. Geogr. 2014, 2, 108–112. [Google Scholar]
- Krieger, K.J.; Wing, B.L. Megafauna associations with deep-water corals (Primnoa spp.) in the Gulf of Alaska. Hydrobiologia 2002, 471, 83–90. [Google Scholar] [CrossRef]
- Sherwood, O.A.; Jamieson, R.E.; Edinger, E.N.; Wareham, V.E. Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: Examination of trophic, depth and spatial effects. Deep Sea Res. I 2008, 55, 1392–1402. [Google Scholar] [CrossRef]
- Thomsen, L.; Aguzzi, J.; Costa, C.; De Leo, F.; Ogston, A.; Purser, A. The oceanic biological pump: Rapid carbon transfer to depth at continental margins during winter. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Garrabou, J. Life-history traits of Alcyonium acaule and Parazoanthus axinellae (Cnidaria, Anthozoa), with emphasis on growth. Mar. Ecol. Prog. Ser. 1999, 178, 193–204. [Google Scholar] [CrossRef]
- Rossi, S. Environmental factors affecting the trophic ecology of benthic suspension feeders. Ph.D. Thesis, Department of Ecology, University of Barcelona, Barcelona, Spain, 2002. [Google Scholar]
- Rossi, S.; Coppari, M.; Viladrich, N. Benthic-Pelagic coupling: New perspectives in the animal forests. In Marine Animal Forests; Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 855–885. [Google Scholar]
Sensor | Model |
---|---|
Pressure and temperature | Aanderaa 4117D |
Salinity | Aanderaa 4319A |
Turbidity | Aanderaa 4112A |
Chlorophyll | WetLabs BFL2W |
States | PA | UA |
---|---|---|
Bloated | 82.85% | 80.97% |
Non-Bloated | 61.57% | 61.57% |
Semi-Bloated | 65.04% | 65.04% |
Background | 87.36% | 87.36% |
Period | |||||
---|---|---|---|---|---|
Max | Min | MESOR | Min | h | |
Bloated | 99.97 | 4.43 | 60.56 | 1435 | 23.9 |
Non-Bloated | 87.07 | 0.00 | 21.42 | 1435 | 23.9 |
Semi-Bloated | 67.86 | 0.00 | 18.02 | 1435 | 23.9 |
Temperature | 7.31 | 5.61 | 6.52 | Not Done | |
Salinity | 35.00 | 34.23 | 34.74 | Not Done | |
Chlorophyll | 26.24 | 0.32 | 7.05 | Not Done | |
Turbidity | 124.28 | 5.56 | 6.58 | Not Done | |
Depth | 251.15 | 248.88 | 250.10 | Not Done |
Training (70%) | |
Number of cases | 1150 |
Number of hidden layers | 1 |
Number of nodes | 9 |
Training time | 0:7:02 |
Number of trials | 500 |
% bad predictions | 0.26 (3) |
Testing (30%) | |
Number of cases | 503 |
% bad predictions (N) | 31 (156) |
Bloated | Non-Bloated | Total | |
---|---|---|---|
Bloated | 223 | 70 | 293 |
Non-Bloated | 86 | 124 | 210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuazo, A.; Grinyó, J.; López-Vázquez, V.; Rodríguez, E.; Costa, C.; Ortenzi, L.; Flögel, S.; Valencia, J.; Marini, S.; Zhang, G.; et al. An Automated Pipeline for Image Processing and Data Treatment to Track Activity Rhythms of Paragorgia arborea in Relation to Hydrographic Conditions. Sensors 2020, 20, 6281. https://doi.org/10.3390/s20216281
Zuazo A, Grinyó J, López-Vázquez V, Rodríguez E, Costa C, Ortenzi L, Flögel S, Valencia J, Marini S, Zhang G, et al. An Automated Pipeline for Image Processing and Data Treatment to Track Activity Rhythms of Paragorgia arborea in Relation to Hydrographic Conditions. Sensors. 2020; 20(21):6281. https://doi.org/10.3390/s20216281
Chicago/Turabian StyleZuazo, Ander, Jordi Grinyó, Vanesa López-Vázquez, Erik Rodríguez, Corrado Costa, Luciano Ortenzi, Sascha Flögel, Javier Valencia, Simone Marini, Guosong Zhang, and et al. 2020. "An Automated Pipeline for Image Processing and Data Treatment to Track Activity Rhythms of Paragorgia arborea in Relation to Hydrographic Conditions" Sensors 20, no. 21: 6281. https://doi.org/10.3390/s20216281
APA StyleZuazo, A., Grinyó, J., López-Vázquez, V., Rodríguez, E., Costa, C., Ortenzi, L., Flögel, S., Valencia, J., Marini, S., Zhang, G., Wehde, H., & Aguzzi, J. (2020). An Automated Pipeline for Image Processing and Data Treatment to Track Activity Rhythms of Paragorgia arborea in Relation to Hydrographic Conditions. Sensors, 20(21), 6281. https://doi.org/10.3390/s20216281