An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems
Abstract
:1. Introduction
1.1. Structure of Hand Gesture Recognition Systems
1.2. Evaluation of Hand Gesture Recognition Systems
1.3. User-Specific and User-General HGR Systems
1.4. The Rotation Problem with Bracelet-Shaped Devices and Related Works
1.5. Article Overview
2. Materials and Methods
2.1. Data Acquisition
2.1.1. General and Specific Models
2.1.2. Orientation Considerations for the EMG Sensor
2.2. Pre-Processing
2.3. Feature Extraction
- Standard deviation (SD): This feature measures the dispersion of the EMG signal. It indicates how the data are scattered respectively to the average and is expressed as:
- Absolute envelope (AE): It uses the Hilbert transform for calculating the instantaneous attributes of a time series, especially amplitude and frequency [65]:
- Mean absolute value (MAV): It is a popular feature used in EMG-based hand gesture recognition applications. The mean absolute value is the average of the absolute value of the EMG signal amplitude, and it is defined as follows:
- Energy (E): It is a feature for measuring energy distribution, and it can be represented as [66]:
- Root mean square (RMS): It describes the muscle force and non-fatigue contraction [51]. Mathematically, the RMS can be defined as:
2.4. Classification
Algorithm 1: SVM Classification and Scores validation. |
2.5. Post-Processing
3. Experimental Setup
- Experiment 1: This experiment represents the ideal scenario suggested by the Myo bracelet manufacturer where each user trains and tests the recognition model, placing the bracelet in the same orientation recommended by the manufacturer. This orientation implies that a user should wear the bracelet in such a way that pod number 4 is always parallel to the palm of the hand (see Figure 2b). There is no orientation correction for this experiment;
- Experiment 2: The training EMG signals were acquired with the sensor placed in the orientation recommended by the manufacturer. However, when testing the model, the bracelet was rotated artificially (see Figure 2c). This experiment simulates the scenario where a user wears the sensor without taking into account the suggested positions for the testing procedure, which usually is the most common scenario. However, there is no orientation correction for this experiment;
- Experiment 3: The training EMG signals were acquired with the sensor placed in the orientation recommended by the manufacturer. For testing, the bracelet was rotated, simulating different angles. The orientation correction algorithm was applied for both training and testing data;
- Experiment 4: In this experiment, the performance of the proposed method is evaluated when there is rotation of the bracelet for training and testing, and the orientation correction algorithm was applied for both training and testing data.
4. Results
4.1. Myo Bracelet Model Results Using Manufacturer’s Software
4.2. User-Specific HGR Model Result
4.3. User-General HGR Model Results
4.4. Comparison between User-Specific and User-General Results
4.5. Comparison of Results with Other Papers
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Dataset and Code Availability
Appendix A. Synchronization Gesture Selection
User-General Models | ||
---|---|---|
Gesture | Classification (%) | Recognition (%) |
waveOut | 75.61 | 74.57 |
waveIn | ||
fist | ||
pinch | ||
open |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 892 | 39 | 89 | 75 | 180 | 33 | 1308 68.2% |
waveOut | 120 | 1103 | 55 | 165 | 72 | 9 | 1524 72.38% |
fist | 62 | 15 | 959 | 62 | 59 | 4 | 1161 82.6% |
open | 44 | 59 | 53 | 801 | 140 | 28 | 1125 71.2% |
pinch | 107 | 28 | 80 | 126 | 755 | 15 | 1111 67.96% |
noGesture | 25 | 6 | 14 | 21 | 44 | 1161 | 1271 91.35% |
Targets Count (Sensitivity%) | 1250 71.36% | 1250 88.24% | 1250 76.72% | 1250 64.08% | 1250 60.4% | 1250 92.88% | 7500 75.61% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 841 | 232 | 233 | 249 | 300 | 23 | 1878 44.78% |
waveOut | 80 | 851 | 54 | 118 | 45 | 14 | 1162 73.24% |
fist | 130 | 55 | 824 | 120 | 154 | 21 | 1304 63.19% |
open | 95 | 61 | 61 | 621 | 168 | 5 | 1011 61.42% |
pinch | 38 | 38 | 59 | 108 | 517 | 7 | 767 67.41% |
noGesture | 66 | 13 | 19 | 34 | 66 | 1180 | 1378 85.63% |
Targets Count (Sensitivity%) | 1250 67.28% | 1250 68.08% | 1250 65.92% | 1250 49.68% | 1250 41.36% | 1250 94.4% | 7500 64.45% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 667 | 133 | 157 | 153 | 310 | 31 | 1451 45.97% |
waveOut | 126 | 926 | 31 | 95 | 32 | 8 | 1218 76.03% |
fist | 154 | 43 | 816 | 76 | 199 | 7 | 1295 63.01% |
open | 77 | 56 | 115 | 730 | 109 | 7 | 1094 66.73% |
pinch | 165 | 64 | 104 | 120 | 540 | 16 | 1009 53.52% |
noGesture | 61 | 28 | 27 | 76 | 60 | 1181 | 1433 82.41% |
Targets Count (Sensitivity%) | 1250 53.36% | 1250 74.08% | 1250 65.28% | 1250 58.4% | 1250 43.2% | 1250 94.48% | 7500 64.8% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 645 | 132 | 124 | 165 | 134 | 19 | 1219 52.91% |
waveOut | 165 | 948 | 59 | 126 | 120 | 36 | 1454 65.2% |
fist | 163 | 43 | 863 | 115 | 114 | 8 | 1306 66.08% |
open | 68 | 58 | 74 | 704 | 148 | 5 | 1057 66.6% |
pinch | 165 | 56 | 119 | 92 | 711 | 12 | 1155 61.56% |
noGesture | 44 | 13 | 11 | 48 | 23 | 1170 | 1309 89.38% |
Targets Count (Sensitivity%) | 1250 51.6% | 1250 75.84% | 1250 69.04% | 1250 56.32% | 1250 56.88% | 1250 93.6% | 7500 67.21% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 826 | 71 | 150 | 66 | 182 | 12 | 1307 63.2% |
waveOut | 153 | 1034 | 57 | 165 | 81 | 11 | 1501 68.89% |
fist | 102 | 28 | 960 | 34 | 81 | 11 | 1216 78.95% |
open | 54 | 85 | 33 | 867 | 140 | 7 | 1186 73.1% |
pinch | 56 | 24 | 39 | 80 | 727 | 14 | 940 77.34% |
noGesture | 59 | 8 | 11 | 38 | 39 | 1195 | 1350 88.52% |
Targets Count (Sensitivity%) | 1250 66.08% | 1250 82.72% | 1250 76.8% | 1250 69.36% | 1250 58.16% | 1250 95.6% | 7500 74.79% |
Appendix B. Confusion Matrices of User-Specific Models
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 7305 | 64 | 70 | 55 | 40 | 171 | 7705 94.81% |
waveOut | 80 | 7450 | 68 | 56 | 26 | 135 | 7815 95.33% |
fist | 26 | 15 | 7306 | 43 | 23 | 138 | 7551 96.76% |
open | 75 | 66 | 106 | 7291 | 111 | 143 | 7792 93.57% |
pinch | 37 | 30 | 44 | 39 | 7052 | 148 | 7350 95.95% |
noGesture | 127 | 25 | 56 | 166 | 398 | 6915 | 7687 89.96% |
Targets Count (Sensitivity%) | 7650 95.49% | 7650 97.39% | 7650 95.5% | 7650 95.31% | 7650 92.18% | 7650 90.39% | 45,900 94.38% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6471 | 203 | 362 | 317 | 646 | 173 | 8172 79.19% |
waveOut | 261 | 6475 | 87 | 420 | 280 | 123 | 7646 84.68% |
fist | 369 | 25 | 6635 | 331 | 698 | 164 | 8222 80.7% |
open | 199 | 865 | 324 | 6070 | 1106 | 165 | 8729 69.54% |
pinch | 102 | 24 | 127 | 239 | 4231 | 87 | 4810 87.96% |
noGesture | 248 | 58 | 115 | 273 | 689 | 6938 | 8321 83.38% |
Targets Count (Sensitivity%) | 7650 84.59% | 7650 84.64% | 7650 86.73% | 7650 79.35% | 7650 55.31% | 7650 90.69% | 45,900 80.22% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 7223 | 126 | 162 | 77 | 133 | 179 | 7900 91.43% |
waveOut | 108 | 7293 | 85 | 60 | 24 | 137 | 7707 94.63% |
fist | 53 | 66 | 7144 | 137 | 56 | 138 | 7594 94.07% |
open | 70 | 85 | 120 | 7147 | 131 | 140 | 7693 92.9% |
pinch | 60 | 34 | 73 | 63 | 6942 | 158 | 7330 94.71% |
noGesture | 136 | 46 | 66 | 166 | 364 | 6898 | 7676 89.86% |
Targets Count (Sensitivity%) | 7650 94.42% | 7650 95.33% | 7650 93.39% | 7650 93.42% | 7650 90.75% | 7650 90.17% | 45,900 92.91% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 7166 | 136 | 203 | 131 | 166 | 168 | 7970 89.91% |
waveOut | 89 | 7268 | 82 | 157 | 86 | 132 | 7814 93.01% |
fist | 104 | 99 | 7061 | 123 | 90 | 149 | 7626 92.59% |
open | 77 | 68 | 128 | 6991 | 151 | 129 | 7544 92.67% |
pinch | 93 | 54 | 110 | 65 | 6777 | 170 | 7269 93.23% |
noGesture | 121 | 25 | 66 | 183 | 380 | 6902 | 7677 89.9% |
Targets Count (Sensitivity%) | 7650 93.67% | 7650 95.01% | 7650 92.3% | 7650 91.39% | 7650 88.59% | 7650 90.22% | 45,900 91.86% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 7281 | 88 | 86 | 44 | 43 | 165 | 7707 94.47% |
waveOut | 118 | 7409 | 92 | 63 | 27 | 136 | 7845 94.44% |
fist | 35 | 26 | 7264 | 46 | 41 | 135 | 7547 96.25% |
open | 72 | 65 | 118 | 7311 | 115 | 136 | 7817 93.53% |
pinch | 30 | 40 | 44 | 74 | 7113 | 154 | 7455 95.41% |
noGesture | 114 | 22 | 46 | 112 | 311 | 6924 | 7529 91.96% |
Targets Count (Sensitivity%) | 7650 95.18% | 7650 96.85% | 7650 94.95% | 7650 95.57% | 7650 92.98% | 7650 90.51% | 45,900 94.34% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6562 | 157 | 285 | 311 | 703 | 178 | 8196 80.06% |
waveOut | 184 | 6421 | 92 | 395 | 216 | 125 | 7433 86.39% |
fist | 432 | 58 | 6676 | 265 | 687 | 156 | 8274 80.69% |
open | 162 | 892 | 374 | 6207 | 1071 | 162 | 8868 69.99% |
pinch | 97 | 41 | 115 | 262 | 4374 | 94 | 4983 87.78% |
noGesture | 213 | 81 | 108 | 210 | 599 | 6935 | 8146 85.13% |
Targets Count (Sensitivity%) | 7650 85.78% | 7650 83.93% | 7650 87.27% | 7650 81.14% | 7650 57.18% | 7650 90.65% | 45,900 80.99% |
Appendix C. Confusion Matrices of User-General Models
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6488 | 205 | 393 | 319 | 652 | 168 | 8225 78.88% |
waveOut | 256 | 6422 | 79 | 399 | 292 | 127 | 7575 84.78% |
fist | 343 | 27 | 6597 | 318 | 684 | 160 | 8129 81.15% |
open | 200 | 908 | 323 | 6099 | 1053 | 168 | 8751 69.69% |
pinch | 107 | 28 | 147 | 241 | 4286 | 86 | 4895 87.56% |
noGesture | 256 | 60 | 111 | 274 | 683 | 6941 | 8325 83.38% |
Targets Count (Sensitivity%) | 7650 84.81% | 7650 83.95% | 7650 86.24% | 7650 79.73% | 7650 56.03% | 7650 90.73% | 45,900 80.25% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6471 | 203 | 362 | 317 | 646 | 173 | 8172 79.19% |
waveOut | 261 | 6475 | 87 | 420 | 280 | 123 | 7646 84.68% |
fist | 369 | 25 | 6635 | 331 | 698 | 164 | 8222 80.7% |
open | 199 | 865 | 324 | 6070 | 1106 | 165 | 8729 69.54% |
pinch | 102 | 24 | 127 | 239 | 4231 | 87 | 4810 87.96% |
noGesture | 248 | 58 | 115 | 273 | 689 | 6938 | 8321 83.38% |
Targets Count (Sensitivity%) | 7650 84.59% | 7650 84.64% | 7650 86.73% | 7650 79.35% | 7650 55.31% | 7650 90.69% | 45,900 80.22% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6527 | 150 | 364 | 312 | 776 | 171 | 8300 78.64% |
waveOut | 191 | 6405 | 59 | 374 | 255 | 124 | 7408 86.46% |
fist | 390 | 44 | 6566 | 310 | 705 | 151 | 8166 80.41% |
open | 200 | 908 | 388 | 6171 | 1100 | 171 | 8938 69.04% |
pinch | 107 | 67 | 139 | 230 | 4179 | 80 | 4802 87.03% |
noGesture | 235 | 76 | 134 | 253 | 635 | 6953 | 8286 83.91% |
Targets Count (Sensitivity%) | 7650 85.32% | 7650 83.73% | 7650 85.83% | 7650 80.67% | 7650 54.63% | 7650 90.89% | 45,900 80.18% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6459 | 194 | 377 | 310 | 721 | 162 | 8223 78.55% |
waveOut | 214 | 6357 | 87 | 430 | 252 | 126 | 7466 85.15% |
fist | 419 | 85 | 6558 | 363 | 728 | 164 | 8317 78.85% |
open | 208 | 908 | 380 | 6079 | 1073 | 164 | 8812 68.99% |
pinch | 105 | 32 | 131 | 239 | 4204 | 84 | 4795 87.67% |
noGesture | 245 | 74 | 117 | 229 | 672 | 6950 | 8287 83.87% |
Targets Count (Sensitivity%) | 7650 84.43% | 7650 83.1% | 7650 85.73% | 7650 79.46% | 7650 54.95% | 7650 90.85% | 45,900 79.75% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6557 | 175 | 303 | 307 | 699 | 187 | 8228 79.69% |
waveOut | 224 | 6450 | 82 | 406 | 231 | 127 | 7520 85.77% |
fist | 396 | 40 | 6652 | 234 | 653 | 154 | 8129 81.83% |
open | 153 | 864 | 367 | 6212 | 1026 | 161 | 8783 70.73% |
pinch | 106 | 45 | 126 | 260 | 4437 | 94 | 5068 87.55% |
noGesture | 214 | 76 | 120 | 231 | 604 | 6927 | 8172 84.77% |
Targets Count (Sensitivity%) | 7650 85.71% | 7650 84.31% | 7650 86.95% | 7650 81.2% | 7650 58% | 7650 90.55% | 45,900 81.12% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6562 | 157 | 285 | 311 | 703 | 178 | 8196 80.06% |
waveOut | 184 | 6421 | 92 | 395 | 216 | 125 | 7433 86.39% |
fist | 432 | 58 | 6676 | 265 | 687 | 156 | 8274 80.69% |
open | 162 | 892 | 374 | 6207 | 1071 | 162 | 8868 69.99% |
pinch | 97 | 41 | 115 | 262 | 4374 | 94 | 4983 87.78% |
noGesture | 213 | 81 | 108 | 210 | 599 | 6935 | 8146 85.13% |
Targets Count (Sensitivity%) | 7650 85.78% | 7650 83.93% | 7650 87.27% | 7650 81.14% | 7650 57.18% | 7650 90.65% | 45,900 80.99% |
Appendix D. Description of Gestures Used in Other Works Found in the Literature
References
- Jaramillo-Yánez, A.; Benalcázar, M.E.; Mena-Maldonado, E. Real-Time Hand Gesture Recognition Using Surface Electromyography and Machine Learning: A Systematic Literature Review. Sensors 2020, 20, 2467. [Google Scholar] [CrossRef] [PubMed]
- Archer, D. Unspoken diversity: Cultural Differences in Gestures. Qual. Sociol. 1997, 20, 79–105. [Google Scholar] [CrossRef]
- Saggio, G.; Orengo, G.; Pallotti, A.; Errico, V.; Ricci, M. Sensory Systems for Human Body Gesture Recognition and Motion Capture. In Proceedings of the 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Athira, P.K.; Sruthi, C.J.; Lijiya, A. A Signer Independent Sign Language Recognition with Co-Articulation Elimination from Live Videos: An Indian Scenario. J. King Saud Univ. Comput. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Sidig, A.A.I.; Luqman, H.; Mahmoud, S.A. Arabic Sign Language Recognition Using Optical Flow-Based Features and HMM. In Lecture Notes on Data Engineering and Communications Technologies; Springer: Cham, Switzerland, 2017; pp. 297–305. [Google Scholar] [CrossRef]
- Wang, N.; Lao, K.; Zhang, X. Design and Myoelectric Control of an Anthropomorphic Prosthetic Hand. J. Bionic Eng. 2017, 14, 47–59. [Google Scholar] [CrossRef]
- Tavakoli, M.; Benussi, C.; Lourenco, J.L. Single Channel Surface EMG Control of Advanced Prosthetic Hands: A Simple, Low Cost and Efficient Approach. Expert Syst. Appl. 2017, 79, 322–332. [Google Scholar] [CrossRef]
- Ullah, A.; Ali, S.; Khan, I.; Khan, M.A.; Faizullah, S. Effect of Analysis Window and Feature Selection on Classification of Hand Movements Using EMG Signal. In Intelligent Systems and Applications; Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 400–415. [Google Scholar]
- Bermeo-Calderon, J.; Velasco, M.A.; Rojas, J.L.; Villarreal-Lopez, J.; Galvis Resrepo, E. Movement Control System for a Transradial Prosthesis Using Myoelectric Signals. In AETA 2019—Recent Advances in Electrical Engineering and Related Sciences: Theory and Application; Cortes Tobar, D.F., Hoang Duy, V., Trong Dao, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 273–282. [Google Scholar]
- Liu, H.; Wang, L. Gesture Recognition for Human-Robot Collaboration: A Review. Int. J. Ind. Ergon. 2018, 68, 355–367. [Google Scholar] [CrossRef]
- Wang, J.; Tang, L.; Bronlund, J.E. Pattern Recognition-Based Real Time Myoelectric System for Robotic Hand Control. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 1598–1605. [Google Scholar]
- Lu, L.; Mao, J.; Wang, W.; Ding, G.; Zhang, Z. A Study of Personal Recognition Method Based on EMG Signal. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 681–691. [Google Scholar] [CrossRef]
- Chang, J.; Phinyomark, A.; Bateman, S.; Scheme, E. Wearable EMG-Based Gesture Recognition Systems During Activities of Daily Living: An Exploratory Study. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3448–3451. [Google Scholar]
- Wachs, J.; Stern, H.; Edan, Y.; Gillam, M.; Feied, C.; Smith, M.; Handler, J. A Real-Time Hand Gesture Interface for Medical Visualization Applications. In Advances in Soft Computing; Springer: Berlin/Heidelberg, Germany, 2006; Volume 36, pp. 153–162. [Google Scholar] [CrossRef]
- Wipfli, R.; Dubois-Ferrière, V.; Budry, S.; Hoffmeyer, P.; Lovis, C. Gesture-Controlled Image Management for Operating Room: A Randomized Crossover Study to Compare Interaction Using Gestures, Mouse, and Third Person Relaying. PLoS ONE 2016, 11, e0153596. [Google Scholar] [CrossRef]
- Jacob, M.G.; Wachs, J.P.; Packer, R.A. Hand-Gesture-Based Sterile Interface for the Operating Room Using Contextual Cues for the Navigation of Radiological Images. J. Am. Med. Inform. Assoc. 2013, 20, e183–e186. [Google Scholar] [CrossRef] [Green Version]
- Andronache, C.; Negru, M.; Neacsu, A.; Cioroiu, G.; Radoi, A.; Burileanu, C. Towards extending real-time EMG-based gesture recognition system. In Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), Milan, Italy, 7–9 July 2020; pp. 301–304. [Google Scholar]
- Chahid, A.; Khushaba, R.; Al-Jumaily, A.; Laleg-Kirati, T. A Position Weight Matrix Feature Extraction Algorithm Improves Hand Gesture Recognition. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5765–5768. [Google Scholar]
- Iyer, D.; Mohammad, F.; Guo, Y.; Al Safadi, E.; Smiley, B.J.; Liang, Z.; Jain, N.K. Generalized Hand Gesture Recognition for Wearable Devices in IoT: Application and Implementation Challenges. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2016; Volume 9729, pp. 346–355. [Google Scholar] [CrossRef]
- Moschetti, A.; Fiorini, L.; Esposito, D.; Dario, P.; Cavallo, F. Recognition of Daily Gestures with Wearable Inertial Rings and Bracelets. Sensors 2016, 16, 1341. [Google Scholar] [CrossRef] [Green Version]
- Palmeri, M.; Vella, F.; Infantino, I.; Gaglio, S. Sign Languages Recognition Based on Neural Network Architecture. In Smart Innovation, Systems and Technologies; Springer: Cham, Switzerland, 2018; Volume 76, pp. 109–118. [Google Scholar] [CrossRef]
- Abhishek, K.S.; Qubeley, L.C.K.; Ho, D. Glove-Based Hand Gesture Recognition Sign Language Translator Using Capacitive Touch Sensor. In Proceedings of the 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, 3–5 August 2016; pp. 334–337. [Google Scholar]
- Benatti, S.; Rovere, G.; Bosser, J.; Montagna, F.; Farella, E.; Glaser, H.; Schonle, P.; Burger, T.; Fateh, S.; Huang, Q.; et al. A Sub-10mW Real-Time Implementation for EMG Hand Gesture Recognition Based on a Multi-Core Biomedical SoC. In Proceedings of the 2017 7th International Workshop on Advances in Sensors and Interfaces (IWASI), Vieste, Italy, 15–16 June 2017; pp. 139–144. [Google Scholar]
- Weiss, L.D.; Weiss, J.M.; Silver, J.K. Easy EMG: A Guide to Performing Nerve Conduction Studies and Electromyography; Elsevier: Amsterdam, The Netherlands, 2015; p. 304. [Google Scholar]
- Farina, D.; Jiang, N.; Rehbaum, H.; Holobar, A.; Graimann, B.; Dietl, H.; Aszmann, O.C. The Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Barros, P.; Maciel-Junior, N.T.; Fernandes, B.J.; Bezerra, B.L.; Fernandes, S.M. A Dynamic Gesture Recognition and Prediction System Using the Convexity Approach. Comput. Vis. Image Underst. 2017, 155, 139–149. [Google Scholar] [CrossRef]
- Benalcazar, M.E.; Motoche, C.; Zea, J.A.; Jaramillo, A.G.; Anchundia, C.E.; Zambrano, P.; Segura, M.; Benalcazar Palacios, F.; Perez, M. Real-Time Hand Gesture Recognition Using the Myo Armband and Muscle Activity Detection. In Proceedings of the 2017 IEEE 2nd Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Scherer, R.; Rao, R. Non-Manual Control Devices. In Handbook of Research on Personal Autonomy Technologies and Disability Informatics; IGI Global: Hershey, PA, USA, 2011; pp. 233–250. [Google Scholar] [CrossRef]
- Chung, E.A.; Benalcázar, M.E. Real-time Hand Gesture Recognition Model Using Deep Learning Techniques and EMG Signals. In Proceedings of the European Signal Processing Conference. European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019. [Google Scholar] [CrossRef]
- Fajardo, J.M.; Gomez, O.; Prieto, F. EMG hand gesture classification using handcrafted and deep features. Biomed. Signal Process. Control 2020, 63, 102210. [Google Scholar] [CrossRef]
- Pinzón-Arenas, J.O.; Jiménez-Moreno, R.; Rubiano, A. Percentage estimation of muscular activity of the forearm by means of EMG signals based on the gesture recognized using CNN. Sens. Bio-Sens. Res. 2020, 29, 100353. [Google Scholar] [CrossRef]
- Zanghieri, M.; Benatti, S.; Burrello, A.; Kartsch, V.; Conti, F.; Benini, L. Robust real-time embedded emg recognition framework using temporal convolutional networks on a multicore iot processor. IEEE Trans. Biomed. Circuits Syst. 2019, 14, 244–256. [Google Scholar] [CrossRef]
- Asif, A.R.; Waris, A.; Gilani, S.O.; Jamil, M.; Ashraf, H.; Shafique, M.; Niazi, I.K. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG. Sensors 2020, 20, 1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhang, Y.; Li, G.; Fang, Y.; Liu, H. Surface electromyography feature extraction via convolutional neural network. Int. J. Mach. Learn. Cybern. 2020, 11, 185–196. [Google Scholar] [CrossRef]
- Yang, W.; Yang, D.; Liu, Y.; Liu, H. EMG pattern recognition using convolutional neural network with different scale signal/spectra input. Int. J. Humanoid Robot. 2019, 16, 1950013. [Google Scholar] [CrossRef]
- Raez, M.B.I.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG Signal Analysis: Detection, Processing, Classification and Applications. Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef] [Green Version]
- Ameur, S.; Khalifa, A.B.; Bouhlel, M.S. A Comprehensive Leap Motion Database for Hand Gesture Recognition. In Proceedings of the 2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Hammamet, Tunisia, 18–20 December 2016; pp. 514–519. [Google Scholar] [CrossRef]
- Winarno, H.; Poernama, A.; Soesanti, I.; Nugroho, H. Evaluation on EMG Electrode Reduction in Recognizing the Pattern of Hand Gesture by Using SVM Method. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1577, p. 012044. [Google Scholar]
- Zhang, Z.; Yang, K.; Qian, J.; Zhang, L. Real-time surface emg real pattern recognition for hand gestures based on an artificial neural network. Sensors 2019, 19, 3170. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo-Yanez, A.; Unapanta, L.; Benalcázar, M.E. Short-Term Hand Gesture Recognition using Electromyography in the Transient State, Support Vector Machines, and Discrete Wavelet Transform. In Proceedings of the 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Guayaquil, Ecuador, 11–15 November 2019; pp. 1–6. [Google Scholar]
- Pamungkas, D.S.; Simatupang, I. Comparison EMG Pattern Recognition Using Bayes and NN Methods. In Proceedings of the 2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), Medan, Indonesia, 25–27 June 2020; pp. 1–4. [Google Scholar]
- Mohanty, A.; Rambhatla, S.S.; Sahay, R.R. Deep Gesture: Static Hand Gesture Recognition Using CNN. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2017; Volume 460, pp. 449–461. [Google Scholar] [CrossRef]
- Jabbari, M.; Khushaba, R.N.; Nazarpour, K. EMG-Based Hand Gesture Classification with Long Short-Term Memory Deep Recurrent Neural Networks. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3302–3305. [Google Scholar]
- Neacsu, A.A.; Cioroiu, G.; Radoi, A.; Burileanu, C. Automatic emg-based hand gesture recognition system using time-domain descriptors and fully-connected neural networks. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; pp. 232–235. [Google Scholar]
- Kocejko, T.; Brzezinski, F.; Polinski, A.; Ruminski, J.; Wtorek, J. Neural network based algorithm for hand gesture detection in a low-cost microprocessor applications. In Proceedings of the 2020 13th International Conference on Human System Interaction (HSI), Tokyo, Japan, 6–8 June 2020; pp. 204–209. [Google Scholar]
- Zea, J.A.; Benalcázar, M.E. Real-Time Hand Gesture Recognition: A Long Short-Term Memory Approach with Electromyography. In Proceedings of the International Conference on Computer Science, Electronics and Industrial Engineering (CSEI), Ambato, Ecuador, 28–31 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 155–167. [Google Scholar]
- Shanmuganathan, V.; Yesudhas, H.R.; Khan, M.S.; Khari, M.; Gandomi, A.H. R-CNN and wavelet feature extraction for hand gesture recognition with EMG signals. Neural Comput. Appl. 2020, 32, 16723–16736. [Google Scholar] [CrossRef]
- Simão, M.; Neto, P.; Gibaru, O. EMG-based online classification of gestures with recurrent neural networks. Pattern Recognit. Lett. 2019, 128, 45–51. [Google Scholar] [CrossRef]
- Benalcázar, M.E.; Anchundia, C.E.; Zea, J.A.; Zambrano, P.; Jaramillo, A.G.; Segura, M. Real-Time Hand Gesture Recognition Based on Artificial Feed-Forward Neural Networks and EMG. In Proceedings of the European Signal Processing Conference, Rome, Italy, 3–7 September 2018; pp. 1492–1496. [Google Scholar] [CrossRef]
- Zea, J.A.; Benalcázar, M.E. Real-Time Hand Gesture Recognition: A Long Short-Term Memory Approach with Electromyography. In Advances and Applications in Computer Science, Electronics and Industrial Engineering; Nummenmaa, J., Pérez-González, F., Domenech-Lega, B., Vaunat, J., Oscar Fernández-Peña, F., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 155–167. [Google Scholar]
- Hudgins, B.; Parker, P.; Scott, R.N. A New Strategy for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng. 1993, 40, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.B. Response Time in Man-Computer Conversational Transactions. In AFIPS ’68 (Fall, Part I): Proceedings of the December 9–11, 1968, Fall Joint Computer Conference, Part I; ACM Press: New York, NY, USA, 1968; p. 267. [Google Scholar] [CrossRef]
- Li, G.; Zhang, R.; Ritchie, M.; Griffiths, H. Sparsity-Based Dynamic Hand Gesture Recognition Using Micro-Doppler Signatures. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 0928–0931. [Google Scholar]
- Kerber, F.; Puhl, M.; Krüger, A. User-Independent Real-Time Hand Gesture Recognition Based on Surface Electromyography. In MobileHCI ’17: Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services; Association for Computing Machinery, Inc.: New York, NY, USA, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Hargrove, L.; Englehart, K.; Hudgins, B. A Training Strategy to Reduce Classification Degradation due to Electrode Displacements in Pattern Recognition based Myoelectric Control. Biomed. Signal Process. Control 2008, 3, 175–180. [Google Scholar] [CrossRef]
- Sueaseenak, D.; Uburi, T.; Tirasuwannarat, P. Optimal Placement of Multi-Channels sEMG Electrod for Finger Movement Classification. In Proceedings of the 2017 4th International Conference on Biomedical and Bioinformatics Engineering, Seoul, Korea, 14 November 2017; pp. 78–83. [Google Scholar]
- Boschmann, A.; Platzner, M. Reducing Classification Accuracy Degradation of Pattern Recognition Based Myoelectric Control Caused by Electrode Shift Using a High Density Electrode Array. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 4324–4327. [Google Scholar]
- Zhang, Y.; Chen, Y.; Yu, H.; Yang, X.; Lu, W.; Liu, H. Wearing-Independent Hand Gesture Recognition Method Based on EMG Armband. Pers. Ubiquitous Comput. 2018, 22, 511–524. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, L.; Qian, J.; Zhang, Z. Advanced Hand Gesture Prediction Robust to Electrode Shift with an Arbitrary Angle. Sensors 2020, 20, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benalcázar, M.; Barona, L.; Valdivieso, L.; Aguas, X.; Zea, J. EMG-EPN-612 Dataset. 2020. Available online: https://doi.org/10.5281/zenodo.4027874 (accessed on 28 October 2020).
- Artificial Intelligence and Computer Vision Research Lab, Escuela Politécnica Nacional. EMG-EPN-612. Available online: https://laboratorio-ia.epn.edu.ec/es/recursos/dataset/2020_emg_dataset_612 (accessed on 28 October 2020).
- Artificial Intelligence and Computer Vision Research Lab, Escuela Politécnica Nacional. Code for the Paper “An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems”. Available online: https://github.com/laboratorioAI/2020_ROT_SVM_EPN (accessed on 28 October 2020).
- Vimos, V.H.; Benalcázar, M.; Oña, A.F.; Cruz, P.J. A Novel Technique for Improving the Robustness to Sensor Rotation in Hand Gesture Recognition Using sEMG. In Proceedings of the International Conference on Computer Science, Electronics and Industrial Engineering (CSEI), Ambato, Ecuador, 28–31 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 226–243. [Google Scholar]
- Artificial Intelligence and Computer Vision Research Lab, Escuela Politécnica Nacional. 2020_ROT_SVM_EPN. Available online: https://laboratorio-ia.epn.edu.ec/es/recursos/dataset-y-aplicaciones-2/2020_rot_svm_epn (accessed on 28 October 2020).
- Feldman, M. H ilbert Transform, Envelope, Instantaneous Phase, and Frequency; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Reig Albiñana, D. Implementación de Algoritmos Para la Extracción de Patrones Característicos en Sistemas de Reconocimiento De Voz en Matlab. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2015. [Google Scholar]
- Vapnik, V. Statistics for engineering and information science. In The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Paul, Y.; Goyal, V.; Jaswal, R.A. Comparative analysis between SVM & KNN classifier for EMG signal classification on elementary time domain features. In Proceedings of the 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 21–23 September 2017; pp. 169–175. [Google Scholar]
- Hasan, M.T. Comparison between kNN and SVM for EMG Signal Classification. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 6799–6801. [Google Scholar]
- Wahid, M.F.; Tafreshi, R.; Langari, R. A Multi-Window Majority Voting Strategy to Improve Hand Gesture Recognition Accuracies Using Electromyography Signal. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 28, 427–436. [Google Scholar] [CrossRef] [PubMed]
MATLAB Variable | Value |
---|---|
Kernel Function | polynomial |
Polynomial Order | 3 |
Box Constrain | 1 (variable value for regularization) |
Standardize | ; where = mean, = standard deviation |
Coding | one vs one |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 4831 | 431 | 164 | 211 | 218 | 3 | 5858 82.47% |
waveOut | 368 | 5370 | 262 | 682 | 406 | 3 | 7091 75.73% |
fist | 1047 | 548 | 5361 | 1009 | 1588 | 29 | 9582 55.95% |
open | 334 | 458 | 404 | 4072 | 795 | 2 | 6065 67.14% |
pinch | 105 | 253 | 337 | 342 | 2437 | 3 | 3477 70.09% |
noGesture | 965 | 590 | 1122 | 1334 | 2206 | 7610 | 13827 55.04% |
Targets Count (Sensitivity%) | 7650 63.15% | 7650 70.2% | 7650 70.08% | 7650 53.23% | 7650 31.86% | 7650 99.48% | 45,900 64.66% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 7339 | 65 | 73 | 57 | 36 | 168 | 7738 94.84% |
waveOut | 86 | 7416 | 64 | 54 | 32 | 136 | 7788 95.22% |
fist | 18 | 10 | 7305 | 43 | 19 | 136 | 7531 97% |
open | 79 | 94 | 100 | 7385 | 113 | 138 | 7909 93.37% |
pinch | 34 | 41 | 53 | 49 | 7232 | 150 | 7559 95.67% |
noGesture | 94 | 24 | 55 | 62 | 218 | 6922 | 7375 93.86% |
Targets Count (Sensitivity%) | 7650 95.93% | 7650 96.94% | 7650 95.49% | 7650 96.54% | 7650 94.54% | 7650 90.48% | 45,900 94.99% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 2961 | 2265 | 2104 | 2231 | 2155 | 291 | 12007 24.66% |
waveOut | 1204 | 2320 | 970 | 1030 | 756 | 136 | 6416 36.16% |
fist | 1763 | 1874 | 2862 | 1714 | 1579 | 254 | 10046 28.49% |
open | 515 | 526 | 594 | 1389 | 516 | 127 | 3667 37.88% |
pinch | 869 | 566 | 874 | 965 | 2052 | 143 | 5469 37.52% |
noGesture | 338 | 99 | 246 | 321 | 592 | 6699 | 8295 80.76% |
Targets Count (Sensitivity%) | 7650 38.71% | 7650 30.33% | 7650 37.41% | 7650 18.16% | 7650 26.82% | 7650 87.57% | 45,900 39.83% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 7338 | 49 | 80 | 46 | 39 | 171 | 7723 95.01% |
waveOut | 75 | 7460 | 65 | 54 | 29 | 134 | 7817 95.43% |
fist | 22 | 13 | 7301 | 44 | 22 | 137 | 7539 96.84% |
open | 76 | 68 | 118 | 7381 | 123 | 139 | 7905 93.37% |
pinch | 31 | 40 | 43 | 36 | 7175 | 149 | 7474 96% |
noGesture | 108 | 20 | 43 | 89 | 262 | 6920 | 7442 92.99% |
Targets Count (Sensitivity%) | 7650 95.92% | 7650 97.52% | 7650 95.44% | 7650 96.48% | 7650 93.79% | 7650 90.46% | 45,900 94.93% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 7335 | 50 | 86 | 46 | 40 | 173 | 7730 94.89% |
waveOut | 77 | 7471 | 59 | 50 | 28 | 134 | 7819 95.55% |
fist | 27 | 10 | 7307 | 43 | 24 | 141 | 7552 96.76% |
open | 72 | 67 | 113 | 7386 | 125 | 137 | 7900 93.49% |
pinch | 33 | 35 | 41 | 33 | 7174 | 150 | 7466 96.09% |
noGesture | 106 | 17 | 44 | 92 | 259 | 6915 | 7433 93.03% |
Targets Count (Sensitivity%) | 7650 95.88% | 7650 97.66% | 7650 95.52% | 7650 96.55% | 7650 93.78% | 7650 90.39% | 45,900 94.96% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6421 | 151 | 201 | 239 | 549 | 186 | 7747 82.88% |
waveOut | 198 | 6544 | 112 | 516 | 270 | 134 | 7774 84.18% |
fist | 467 | 26 | 6696 | 278 | 682 | 153 | 8302 80.66% |
open | 209 | 799 | 358 | 6070 | 891 | 170 | 8497 71.44% |
pinch | 160 | 79 | 173 | 395 | 4832 | 116 | 5755 83.96% |
noGesture | 195 | 51 | 110 | 152 | 426 | 6891 | 7825 88.06% |
Targets Count (Sensitivity%) | 7650 83.93% | 7650 85.54% | 7650 87.53% | 7650 79.35% | 7650 63.16% | 7650 90.08% | 45,900 81.6% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 3490 | 3049 | 2426 | 2991 | 2986 | 413 | 15355 22.73% |
waveOut | 1333 | 3007 | 561 | 488 | 189 | 100 | 5678 52.96% |
fist | 1619 | 715 | 3437 | 1362 | 1775 | 203 | 9111 37.72% |
open | 341 | 645 | 561 | 2146 | 710 | 91 | 4494 47.75% |
pinch | 568 | 117 | 422 | 377 | 1594 | 81 | 3159 50.46% |
noGesture | 299 | 117 | 243 | 286 | 396 | 6762 | 8103 83.45% |
Targets Count (Sensitivity%) | 7650 45.62% | 7650 39.31% | 7650 44.93% | 7650 28.05% | 7650 20.84% | 7650 88.39% | 45,900 44.52% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6666 | 143 | 344 | 296 | 744 | 215 | 8408 79.28% |
waveOut | 197 | 6482 | 85 | 370 | 260 | 139 | 7533 86.05% |
fist | 341 | 39 | 6612 | 251 | 663 | 160 | 8066 81.97% |
open | 163 | 892 | 387 | 6257 | 1069 | 170 | 8938 70% |
pinch | 92 | 30 | 121 | 265 | 4373 | 87 | 4968 88.02% |
noGesture | 191 | 64 | 101 | 211 | 541 | 6879 | 7987 86.13% |
Targets Count (Sensitivity%) | 7650 87.14% | 7650 84.73% | 7650 86.43% | 7650 81.79% | 7650 57.16% | 7650 89.92% | 45,900 81.2% |
Targets | Predictions Count (Precision%) | ||||||
---|---|---|---|---|---|---|---|
waveIn | waveOut | Fist | Open | Pinch | noGesture | ||
waveIn | 6651 | 138 | 336 | 302 | 725 | 217 | 8369 79.47% |
waveOut | 207 | 6550 | 83 | 416 | 264 | 139 | 7659 85.52% |
fist | 359 | 29 | 6614 | 262 | 656 | 160 | 8080 81.86% |
open | 147 | 849 | 391 | 6165 | 1034 | 162 | 8748 70.47% |
pinch | 95 | 30 | 126 | 295 | 4424 | 95 | 5065 87.34% |
noGesture | 191 | 54 | 100 | 210 | 547 | 6877 | 7979 86.19% |
Targets Count (Sensitivity%) | 7650 86.94% | 7650 85.62% | 7650 86.46% | 7650 80.59% | 7650 57.83% | 7650 89.9% | 45,900 81.22% |
Model | Specific | General |
---|---|---|
Time (ms) |
Paper | Device | Pods Sensors | Gestures | Train/Test Users | Class.(%) | Recog.(%) | HGR Model | Recognition Evaluated | Rotation Performed | Correction of Rotation | |
---|---|---|---|---|---|---|---|---|---|---|---|
[39] | MYO | 8 * | 5 | 12/12 | 97.80 | - | S | no | no | no | |
[70] | Delsys | 12 | 6 | 40/40 | 79.68 | - | S | no | no | no | |
[39] | MYO | 8 * | 5 | 12/12 | 98.70 | - | S | no | no | no | |
[55] | Sensors | 5 | 11 | 4/4 | 81.00 | - | S | no | yes | no | |
[57] | High Density | 96 | 11 | 1/1 | 60.00 | - | S | no | yes | no | |
[58] | MYO | 8 * | 15 | 1/1 | 91.47 | - | S | no | yes | yes | |
[59] | MYO | 8 * | 6 | 10/10 | 94.70 | - | S | no | yes | yes | |
[63] | MYO | 8 * | 5 | 40/40 | 92.40 | - | G | no | yes | yes | |
S-HGR ** | MYO | 8 * | 5 | 306/306 | 94.96 | 94.20 | S | yes | yes | yes | |
G-HGR ** | MYO | 8 * | 5 | 306/306 *** | 81.22 | 80.31 | G | yes | yes | yes | |
S-HGR ** | MYO | 8* | 5 | 306/306 | 94.96 | 94.20 | S | yes | yes | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barona López, L.I.; Valdivieso Caraguay, Á.L.; Vimos, V.H.; Zea, J.A.; Vásconez, J.P.; Álvarez, M.; Benalcázar, M.E. An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems. Sensors 2020, 20, 6327. https://doi.org/10.3390/s20216327
Barona López LI, Valdivieso Caraguay ÁL, Vimos VH, Zea JA, Vásconez JP, Álvarez M, Benalcázar ME. An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems. Sensors. 2020; 20(21):6327. https://doi.org/10.3390/s20216327
Chicago/Turabian StyleBarona López, Lorena Isabel, Ángel Leonardo Valdivieso Caraguay, Victor H. Vimos, Jonathan A. Zea, Juan P. Vásconez, Marcelo Álvarez, and Marco E. Benalcázar. 2020. "An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems" Sensors 20, no. 21: 6327. https://doi.org/10.3390/s20216327
APA StyleBarona López, L. I., Valdivieso Caraguay, Á. L., Vimos, V. H., Zea, J. A., Vásconez, J. P., Álvarez, M., & Benalcázar, M. E. (2020). An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems. Sensors, 20(21), 6327. https://doi.org/10.3390/s20216327