Drift Reduction of a 4-DOF Measurement System Caused by Unstable Air Refractive Index
Abstract
:1. Introduction
2. Principle and Analysis
2.1. The Principle of the 4-DOF Measurement System
2.2. Influence Mechanism of Laser Beam Drift
2.3. Maximum Allowable Axial Temperature and Pressure Gradient
3. Scheme Design and Parameter Optimization
3.1. Scheme Design
3.2. Parameter Optimization
3.2.1. Inner Diameter of Bellows
3.2.2. Determination of the Parameters and Positions of Optical Elements
3.2.3. Control Mode for the Pumps
4. Experimental Setup and Results
5. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, S.; Wei, H.; Li, Y. Dual-frequency laser displacement and angle interferometer. In Proceedings of the SPIE/COS Photonics Asia, Beijing, China, 13 November 2014; Volume 9276, p. 92761T. [Google Scholar]
- Chen, Q.H.; Wu, J.; Yin, C.Y. Long Range Straightness/Coaxiality Measurement System Using Dual-frequency Laser. Chin. J. Las. 2002, 29, 625–630. [Google Scholar]
- Chen, B.; Cheng, L.; Yan, L.; Zhang, E.; Lou, Y. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology. Rev. Sci. Instrum. 2017, 88, 035114. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Mao, S.; Tan, J.B. Compensation of errors due to incident beam drift in a 3 DOF measurement system for linear guide motion. Opt. Express 2015, 23, 28389–28401. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-C.; Tung, P.-C.; Wang, Y.-C.; Shyu, L.-H.; Manske, E. Linear Displacement Calibration System Integrated with a Novel Auto-Alignment Module for Optical Axes. Sensors 2020, 20, 2462. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Zhang, B.; Cui, C.; Kuang, C.; Zhai, Y.; You, F. Development of a simple system for simultaneously measuring 6 DOF geometric motion errors of a linear guide. Opt. Express 2013, 21, 25805. [Google Scholar]
- Matsukuma, H.; Ishizuka, R.; Furuta, M.; Li, X.; Shimizu, Y.; Gao, W. Reduction in Cross-Talk Errors in a Six-Degree-of-Freedom Surface Encoder. In Nanomanufacturing and Metrology; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Huang, X.D.; Yu, W.B.; Tan, J.B. Study on real-time compensation method for laser drift in 2D displacement measurement. J. Optoelectron. Laser 2014, 25, 299–304. [Google Scholar]
- Zhu, F.; Tan, J.; Cui, J. Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations. Rev. Sci. Instrum. 2013, 84, 065116. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, X.; Yang, H.; Pan, Z. Design of a Predictive RBF Compensation Fuzzy PID Controller for 3D Laser Scanning System. Appl. Sci. 2020, 10, 4662. [Google Scholar] [CrossRef]
- Chen, Z.; Pu, H.; Liu, X.; Peng, D.; Yu, Z. A Time-Grating Sensor for Displacement Measurement with Long Range and Nanometer Accuracy. IEEE Trans. Instrum. Meas. 2015, 64, 3105–3115. [Google Scholar] [CrossRef]
- Huang, Y.B.; Fan, K.C.; Sun, W.; Liu, S.J. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error. Opt. Express 2018, 26, 17185–17198. [Google Scholar] [CrossRef]
- Zhao, W.; Tan, J.; Qiu, L. Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts. Rev. Sci. Instrum. 2005, 76, 1–3. [Google Scholar] [CrossRef]
- Matsumoto, H.; Zhu, Y.; Iwasaki, S.; O’ishi, T. Measurement of the changes in air refractive index and distance by means of a two-color interferometer. Appl. Opt. 1992, 31, 4522–4526. [Google Scholar] [CrossRef] [PubMed]
- Meiners-Hagen, K.; Abou-Zeid, A. Refractive index determination in length measurement by two-colour interferometry. Meas. Sci. Technol. 2008, 19, 084004. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Fu, J.; Li, K. High-Sensitivity, Large Dynamic Range Refractive Index Measurement Using an Optical Microfiber Coupler. Sensors 2019, 19, 5078. [Google Scholar] [CrossRef] [Green Version]
- Ngoi, B.K.A.; Chin, C.S. Self-compensated heterodyne laser interferometer. Int. J. Adv. Manuf. Technol. 2000, 16, 217–219. [Google Scholar]
- Cui, J.J.; Liu, X.B.; Kang, Y.H.; Zhang, H.; Li, J.S. Calibration on Measurement System for the Refractive Index of Air Based on Edlen Formula. Acta Metrol. Sin. 2014, 35, 210–215. [Google Scholar]
- Njegovec, M.; Donlagic, D. A Fiber-Optic Gas Sensor and Method for the Measurement of Refractive Index Dispersion in NIR. Sensors 2020, 20, 3717. [Google Scholar] [CrossRef]
- Lazar, J.; Číp, O.; Čížek, M.; Hrabina, J.; Buchta, Z. Suppression of air Refractive index variations in highresolution interferometry. Sensors 2011, 11, 7644–7655. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.-Y.; Qu, X.-H.; Ding, S. A Real-Time Measurement Method of Air Refractive Index Based on Special Material Etalon. Appl. Sci. 2018, 8, 2325. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Xu, P.; Li, R.; Huang, Q.; Fan, K. A compact 4-DOF measurement system for machine tools. In Proceedings of the International Symposium on Precision Mechanical Measurements, Chongqing, China, 18–21 October 2019. [Google Scholar]
- Cip, O.; Petru, F.; Matousek, V.; Lazar, J. Frequency measurement of refraction index of air for high-resolution laser interferometry. In Proceedings of the Photonics Europe, Strasbourg, France, 17 August 2004; Volume 5458, pp. 273–277. [Google Scholar]
- Holman, J.P. Heat Transfer; Mcgraw-Hill: New York, NY, USA, 2008; Chapter 6. [Google Scholar]
- Kanda, H. Calculation of minimum critical Reynolds number for laminar-turbulent transition in pipe flows. Electron. Trans. Numer. Anal. 2008, 30, 168–186. [Google Scholar]
- Sieder, E.N.; Tate, G.E. Heat Transfer and Pressure Drop of Liquids in Tubes. Ind. Eng. Chem. 1936, 28, 1429–1435. [Google Scholar] [CrossRef]
- Xia, J.; Lewellen, W.S.; Lewellen, D.C. Influence of Mach Number on Tornado Corner Flow Dynamics. J. Atmos. Sci. 2003, 60, 2820–2825. [Google Scholar] [CrossRef]
- McCabe, W.L.; Smith, J.C. Unit Operations of Chemical Engineering; McGraw-Hill: New York, NY, USA, 1993; Chapter 6. [Google Scholar]
- White, F.M. Fluid Mechanics; McGraw-Hil: New York, NY, USA, 2009; Chapter 4. [Google Scholar]
Simulation Results | Modes | |||
---|---|---|---|---|
No Air Inlet-Exhaust | Only Air Inlet | Only Air Exhaust | Air Inlet-Exhaust | |
Axial temperature gradient (°C/m) | 0.30 | 0.20 | 0.20 | 0.15 |
Axial pressure gradient (Pa/m) | 272 | 187 | 178 | 136 |
Experimental Conditions | Laser Beam Drifts | ||
---|---|---|---|
x Direction (μm) | y Direction (μm) | ||
No Interference | 0.3 | 0.4 | |
Interference (A local heat source) | No air inlet-exhaust | 3.4 | 5.0 |
Air inlet-exhaust (2.4 m/s) | 1.2 | 2.5 | |
Air inlet-exhaust (3.6 m/s) | 0.9 | 1.4 | |
Air inlet-exhaust (4.8 m/s) | 0.7 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wang, Y.; Tao, P.; Cheng, R.; Cheng, Z.; Wei, Y.; Dang, X. Drift Reduction of a 4-DOF Measurement System Caused by Unstable Air Refractive Index. Sensors 2020, 20, 6329. https://doi.org/10.3390/s20216329
Li R, Wang Y, Tao P, Cheng R, Cheng Z, Wei Y, Dang X. Drift Reduction of a 4-DOF Measurement System Caused by Unstable Air Refractive Index. Sensors. 2020; 20(21):6329. https://doi.org/10.3390/s20216329
Chicago/Turabian StyleLi, Ruijun, Yongjun Wang, Pan Tao, Rongjun Cheng, Zhenying Cheng, Yongqing Wei, and Xueming Dang. 2020. "Drift Reduction of a 4-DOF Measurement System Caused by Unstable Air Refractive Index" Sensors 20, no. 21: 6329. https://doi.org/10.3390/s20216329
APA StyleLi, R., Wang, Y., Tao, P., Cheng, R., Cheng, Z., Wei, Y., & Dang, X. (2020). Drift Reduction of a 4-DOF Measurement System Caused by Unstable Air Refractive Index. Sensors, 20(21), 6329. https://doi.org/10.3390/s20216329