A New Planar Microwave Sensor for Building Materials Complex Permittivity Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrical Properties of Non-Magnetic Materials
2.2. Method for Relative Permittivity Determination Using Scattering Parameters
2.3. Description of the Concrete Used
3. Proposed Antenna Sensor Design
4. Experimental Procedure and Results
Results of The NRW Method
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seidel, S.Y.; Rappaport, T.S. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Trans. Ant. Propag. 1992, 40, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Young, W.F.; Holloway, C.L.; Koepke, G.; Camell, D.; Becquet, Y.; Remley, K.A. Radio-wave propagation into large building structures—Part 1: CW signal attenuation and variability. IEEE Trans. Ant. Propag. 2010, 58, 1279–1289. [Google Scholar] [CrossRef]
- Remley, K.A.; Koepke, G.; Holloway, C.L.; Grosvenor, C.A.; Camell, D.; Ladbury, J.; Young, W.F. Radio-wave propagation into large building structures—Part 2: Characterization of multipath. IEEE Trans. Ant. Propag. 2010, 58, 1290–1301. [Google Scholar] [CrossRef]
- Cox, D.C.; Murray, R.R.; Norris, A.W. 800-MHz Attenuation Measured in and Around Suburban Houses. AT T Bell Lab. Tech. J. 1984, 63, 921–954. [Google Scholar] [CrossRef]
- Philippidis, T.P.; Aggelis, D.G. Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 2005, 43, 584–595. [Google Scholar] [CrossRef]
- Robert, A. Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. J. Appl. Geophys. 1998, 40, 89–94. [Google Scholar] [CrossRef]
- Shen, P.; Liu, Z. Study on the hydration of young concrete based on dielectric property measurement. Constr. Build. Mater. 2019, 196, 354–361. [Google Scholar] [CrossRef]
- Bois, K.J.; Benally, A.; Nowak, P.S.; Zoughi, R. Microwave nondestructive determination of sand-to-cement ratio in mortar. J. Res. Nondestruct. Eval. 1997, 9, 227–238. [Google Scholar] [CrossRef]
- Trabelsi, S.; Nelson, S.O. Microwave sensor for simultaneous and nondestructive determination of moisture content and bulk density of granular materials. In Proceedings of the 40th European Microwave Conference, Paris, France, 28–30 September 2010; pp. 493–496. [Google Scholar]
- Zhang, Y.; Zhao, J.; Cao, J.; Mao, B. Microwave metamaterial absorber for non-destructive sensing applications of grain. Sensors 2018, 18, 1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, K.H.; Kot, P.; Muradov, M.; Shaw, A.; Hashim, K.; Gkantou, M.; Al-Shamma’a, A. Embedded smart antenna for non-destructive testing and evaluation (NDT&E) of moisture content and deterioration in concrete. Sensors 2019, 19, 547. [Google Scholar]
- Yang, Y.; Divsholi, B.S.; Soh, C.K. A reusable PZT transducer for monitoring initial hydration and structural health of concrete. Sensors 2010, 10, 5193–5208. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Kharkovsky, S. Microwave dual waveguide sensor system for the measurement of gap between concrete and metal surfaces. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference, Taipei, Taiwan, 23–26 May 2016; pp. 1–6. [Google Scholar]
- Islam, M.A.; Kharkovsky, S. Detection and monitoring of gap in concrete-based composite structures using microwave dual waveguide sensor. IEEE Sens. J. 2016, 17, 986–993. [Google Scholar] [CrossRef]
- Chung, K.L.; Yuan, L.; Ji, S.; Zhang, C. Dielectric constant modelling of Chinese-standard concretes for wireless monitoring of structures. In Proceedings of the 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition, London, UK, 30 May–1 June 2017; pp. 186–188. [Google Scholar]
- Chung, K.L.; Yuan, L.; Ji, S.; Zhang, C. Dielectric characterization of Guo Biao concrete. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium (ACES), Suzhou, China, 1–4 August 2017; pp. 1–2. [Google Scholar]
- Sabrin, S.; Kharkovsky, S.; Salama, R. Dielectric resonator antenna integrated sensors for characterization of concrete. In Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST), Sydney, Australia, 4–6 December 2017; pp. 1–6. [Google Scholar]
- Ozturk, M.; Sevim, U.K.; Akgol, O.; Unal, E.; Karaaslan, M. Determination of physical properties of concrete by using microwave nondestructive techniques. Appl. Comput. Electromagn. Soc. J. 2018, 33, 265–272. [Google Scholar]
- Akgol, O.; Unal, E.; Bağmancı, M.; Karaaslan, M.; Sevim, U.K.; Öztürk, M.; Bhadauria, A. A Nondestructive method for determining fiber content and fiber ratio in concretes using a metamaterial sensor based on a v-shaped resonator. J. Electron. Mater. 2019, 48, 2469–2481. [Google Scholar] [CrossRef]
- Al-Mattarneh, H.M.; Ghodgaonkar, D.K.; Majid, W.M.B. Microwave sensing of moisture content in concrete using open-ended rectangular waveguide. Subsurf. Sens. Technol. Appl. 2001, 2, 377–390. [Google Scholar] [CrossRef]
- Chung, K.L.; Yuan, L.; Ji, S.; Zhang, C. Determination of water content for early-age concrete based on dielectric constant. In Proceedings of the 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition, London, UK, 30 May–1 June 2017; pp. 189–191. [Google Scholar]
- Chung, K.L.; Yuan, L.; Ji, S.; Sun, L.; Qu, C.; Zhang, C. Dielectric characterization of Chinese standard concrete for compressive strength evaluation. Appl. Sci. 2017, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Jamil, M.; Hassan, M.K.; Al-Mattarneh, H.M.A.; Zain, M.F.M. Concrete dielectric properties investigation using microwave nondestructive techniques. Mater. Struct. 2013, 46, 77–87. [Google Scholar] [CrossRef]
- Jin, X.; Ali, M. Simple empirical formulas to estimate the dielectric constant and conductivity of concrete. Microw. Opt. Technol. Lett. 2019, 61, 386–390. [Google Scholar] [CrossRef]
- Nicolson, A.M.; Ross, G. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Vicente, A.N.; Dip, G.M.; Junqueira, C. The step by step development of NRW method. In Proceedings of the 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011), Natal, Brazil, 29 October–1 November 2011; pp. 738–742. [Google Scholar]
- Severo, S.L.S.; De Salles, A.A.A.; Nervis, B.; Zanini, B.K. Non-resonant permittivity measurement methods. J. Microw. Optoelectron. Electromagn. Appl. 2017, 16, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Li, B.; Xu, S.; Feng, H. The measurement of dielectric constant of the concrete using single-frequency CW radar. In Proceedings of the 2008 First International Conference on Intelligent Networks and Intelligent Systems, Wuhan, China, 1–3 November 2008; pp. 588–591. [Google Scholar]
- Adous, M.; Quéffélec, P.; Laguerre, L. Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials. Meas. Sci. Technol. 2006, 17, 2241. [Google Scholar] [CrossRef]
- Bourdi, T.; Rhazi, J.E.; Boone, F.; Ballivy, G. Modelling dielectric-constant values of concrete: An aid to shielding effectiveness prediction and ground-penetrating radar wave technique interpretation. J. Phys. D 2012, 45, 405401. [Google Scholar] [CrossRef]
- Piladaeng, N.; Angkawisittpan, N.; Homwuttiwong, S. Determination of relationship between dielectric properties, compressive strength, and age of concrete with rice husk ash using planar coaxial probe. Meas. Sci. Rev. 2016, 16, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Sandrolini, L.; Reggiani, U.; Ogunsola, A. Modelling the electrical properties of concrete for shielding effectiveness prediction. J. Phys. D 2006, 40, 5366. [Google Scholar] [CrossRef]
- Büyüköztürk, O.; Yu, T.Y.; Ortega, J.A. A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements. Cem. Concr. Compos. 2006, 28, 349–359. [Google Scholar] [CrossRef]
- Chung, H.; Cho, J.; Ha, S.G.; Ju, S.; Jung, K.Y. Accurate FDTD dispersive modeling for concrete materials. ETRI J. 2013, 35, 915–918. [Google Scholar] [CrossRef] [Green Version]
- Kalisiak, M.; Wiatr, W. Complete Meniscus Removal Method for Broadband Liquid Characterization in a Semi-Open Coaxial Test Cell. Sensors 2019, 19, 2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusni, I.M.; Ismail, A.; Alhawari, A.R.H.; Hamidon, M.N.; Yusof, N.A. An aligned-gap and centered-gap rectangular multiple split ring resonator for dielectric sensing applications. Sensors 2014, 14, 13134–13148. [Google Scholar] [CrossRef]
- Islam, M.T.; Hoque, A.; Almutairi, A.F.; Amin, N. Left-handed metamaterial-inspired unit cell for S-Band glucose sensing application. Sensors 2019, 19, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, R.M.S. Analysis of the spectral scattering on the surfaces of complex structures for mobile communications applications (in Portuguese). Master’s Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 15 August 2005. [Google Scholar]
- Wilson, R. Propagation Losses through Common Building Materials 2.4 GHz vs 5 GHz; Magis Networks, Inc.: San Diego, CA, USA, 2002; pp. 1–28. [Google Scholar]
- You, K.Y.; Sim, M.S.; Mutadza, H.; Esa, F.; Chan, Y.L. Free-space measurement using explicit, reference-plane and thickness-invariant method for permittivity determination of planar materials. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 222–228. [Google Scholar]
- Handoko, E.; Mangasi, A.M.; Iwan, S.; Randa, M.; Alaydrus, M. Measurement of complex permittivity and permeability of hexagonal ferrite composite material using a waveguide in microwave band. In Proceedings of the 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Jakarta, Indonesia, 3–5 October 2016; pp. 28–30. [Google Scholar]
- Knyazev, N.S.; Malkin, A.I. Dielectric permittivity and permeability measurement system. In Proceedings of the CEUR Workshop, Yekaterinburg, Russia, 9 December 2017; pp. 45–51. [Google Scholar]
- Liu, Z.; Gong, Y.; Zhou, L. Impact of China’s highspeed train window glass on GNSS signals and positioning performance. Satell. Navig. 2020, 1, 1–16. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; Wiley Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
Parameters | Descriptions | Values |
---|---|---|
w (mm) | Total sensor width | 80 |
L (mm) | Total sensor length | 60 |
w1 (mm) | Top feed line width | 1.5 |
w2 (mm) | Bottom feed line width | 3.5 |
w3 (mm) | Laterally placed wide strip width | 5 |
L1 (mm) | Dipole arm length 1 | 32.5 |
L2 (mm) | Dipole arm length 2 | 24.12 |
L3 (mm) | Dipole arm length 3 | 17.85 |
L4 (mm) | Dipole arm length 4 | 13.16 |
Lt (mm) | Center line length | 38.08 |
c1 (mm) | Dipole width 1 | 5 |
c2 (mm) | Dipole width 2 | 3.74 |
c3 (mm) | Dipole width 3 | 2.8 |
c4 (mm) | Dipole width 4 | 2.09 |
S (mm) | Spacing between feed point and dipole 1 | 4.61 |
s1 (mm) | Spacing between dipoles 1 and 2 | 8.77 |
s2 (mm) | Spacing between dipoles 2 and 3 | 6.19 |
s3 (mm) | Spacing between dipoles 3 and 4 | 4.63 |
β (deg) | Angle of tilted forward dipoles | 75 |
Parameters | Values |
---|---|
Maximum directivity | 3.53 |
Maximum gain | 3.47 |
Radiation efficiency | 98.25% |
Front to back ratio | 33.18 |
Reference | ||
---|---|---|
[22] C30 | 3.66 | - |
[22] C35 | 3.87 | - |
[28] | 4.94 | 0.69 |
[29] C4 | 3.64 | 0.08 |
[29] A4 | 3.89 | 0.10 |
[30] 0.2% | 4.61 | 0.18 |
[31] 0.2% | 3.02 | - |
[31] 0.3% | 3.25 | - |
[32] 0.2% | 4.60 | 0.18 |
[33] 17–18 | 4.47 | - |
[34] WC 0.2 | 4.39 | 0.27 |
This work | 3.39 | 0.37 |
Parameter | Mean | Standard Deviation |
---|---|---|
3.39 | 0.2438 | |
0.37 | 0.0935 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.G.D.; Junior, J.G.D.; Pinto, E.N.M.G.; Neto, V.P.S.; D’Assunção, A.G. A New Planar Microwave Sensor for Building Materials Complex Permittivity Characterization. Sensors 2020, 20, 6328. https://doi.org/10.3390/s20216328
Oliveira JGD, Junior JGD, Pinto ENMG, Neto VPS, D’Assunção AG. A New Planar Microwave Sensor for Building Materials Complex Permittivity Characterization. Sensors. 2020; 20(21):6328. https://doi.org/10.3390/s20216328
Chicago/Turabian StyleOliveira, João G. D., José G. Duarte Junior, Erica N. M. G. Pinto, Valdemir P. Silva Neto, and Adaildo G. D’Assunção. 2020. "A New Planar Microwave Sensor for Building Materials Complex Permittivity Characterization" Sensors 20, no. 21: 6328. https://doi.org/10.3390/s20216328
APA StyleOliveira, J. G. D., Junior, J. G. D., Pinto, E. N. M. G., Neto, V. P. S., & D’Assunção, A. G. (2020). A New Planar Microwave Sensor for Building Materials Complex Permittivity Characterization. Sensors, 20(21), 6328. https://doi.org/10.3390/s20216328