Non-Invasive Sheep Biometrics Obtained by Computer Vision Algorithms and Machine Learning Modeling Using Integrated Visible/Infrared Thermal Cameras
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Animal Treatments, and Data Acquisition
2.2. Computer Vision Analysis to Obtain Biometrics
2.3. Statistical Analysis and Machine Learning Modeling
3. Results
4. Discussion
4.1. Selection of Critical Sheep ROIs, Features Tracking, and Automation
4.2. Computer Vision Analysis of Raw Signals Obtained from Videos
4.3. Machine Learning Modeling to Extract Further Sheep Biometrics
4.4. Comparison between Non-Invasive Biometrics and Environmental Heat Stress Indices
4.5. Artificial Intelligence System Proposed Based on Algorithms and Models Developed
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rice, M.; Hemsworth, L.M.; Hemsworth, P.H.; Coleman, G.J. The Impact of a Negative Media Event on Public Attitudes towards Animal Welfare in the Red Meat Industry. Animals 2020, 10, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, G. Available online: https://www.mla.com.au/research-and-development/search-rd-reports/final-report-details/National-livestock-export-industry-sheep-cattle-and-goat-transportperformance-report2017/3852#:~:text=National%20livestock%20export%20industry%20sheep%2C%20cattle%20and%20goat%20transport%20performance%20report%202017&text=The%20overall%20mortality%20rate%20for,of%200.80%25%20observed%20in%202016 (accessed on 11 July 2020).
- Davey, A.; Fisher, R. Available online: https://www.agriculture.gov.au/sites/default/files/documents/draft-ris-animals-australia-attachment-pegasus-report.pdf (accessed on 11 July 2020).
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2019, 9, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef] [PubMed]
- Mallard, B.A.; Husseini, N.; Cartwright, S.; Livernois, A.; Hodgins, D.; Altvater-Hughes, T.; Beard, S.; Karrow, N.; Canovas, A.; Schmied, J. Resilience of High Immune Response (HIR) Genetics in the Context of Climate Change: Effects of Heat Stress on Cattle with Diverse Immune Response Genotypes. J. Immunol. 2020, 204 (Suppl. 1), 92.4. [Google Scholar]
- Mayorga, E.J.; Renaudeau, D.; Ramirez, B.C.; Ross, J.W.; Baumgard, L.H. Heat stress adaptations in pigs. Anim. Front. 2019, 9, 54–61. [Google Scholar] [CrossRef]
- Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; DiGiacomo, K.; Chauhan, S.S. Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review. Animals 2020, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Osei-Amponsah, R.; Chauhan, S.S.; Leury, B.J.; Cheng, L.; Cullen, B.; Clarke, I.J.; Dunshea, F.R. Genetic selection for thermotolerance in ruminants. Animals 2019, 9, 948. [Google Scholar] [CrossRef] [Green Version]
- Rashamol, V.P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Bhatta, R. Physiological adaptability of livestock to heat stress: An updated review. J. Anim. Behav. Biometeorol. 2018, 6. [Google Scholar] [CrossRef]
- Henry, B.; Eckard, R.; Beauchemin, K. Adaptation of ruminant livestock production systems to climate changes. Animal 2018, 12, s445–s456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat stress: Physiology of acclimation and adaptation. Anim. Front. 2019, 9, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Berman, A.; Horovitz, T.; Kaim, M.; Gacitua, H. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress. Int. J. Biometeorol. 2016, 60, 1453–1462. [Google Scholar] [CrossRef]
- Ekine-Dzivenu, C.; Mrode, R.A.; Ojango, J.M.; Okeyo Mwai, A. Evaluating the impact of heat stress as measured by temperature-humidity index (THI) on test-day milk yield of dairy cattle in Tanzania. Livestock Sci. 2019, 104314. [Google Scholar]
- Collier, R.J.; Renquist, B.J.; Xiao, Y. A 100-Year Review: Stress physiology including heat stress. J. Dairy Sci. 2017, 100, 10367–10380. [Google Scholar] [CrossRef]
- Osei-Amponsah, R.; Dunshea, F.R.; Leury, B.J.; Cheng, L.; Cullen, B.; Joy, A.; Abhijith, A.; Zhang, M.H.; Chauhan, S.S. Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy. Animals 2020, 10, 869. [Google Scholar] [CrossRef]
- Peters, R. Sensor Based Measurements of Maximum Day Temperature Effects on Eating-, Ruminating-, Lying-, Inactive Time and Number of Steps in 6 Dutch Dairy Farms. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2019. [Google Scholar]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Sejian, V.; Bhatta, R.; Gaughan, J.; Dunshea, F.; Lacetera, N. Adaptation of animals to heat stress. Animal 2018, 12, s431–s444. [Google Scholar] [CrossRef] [Green Version]
- Pragna, P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.; Soren, N.; Beena, V.; Bhatta, R. Comparative assessment of growth performance of three different indigenous goat breeds exposed to summer heat stress. J. Anim. Physiol. Anim. Nutr. 2018, 102, 825–836. [Google Scholar] [CrossRef]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Jongman, E.C.; Warner, R.D. Computer vision and remote sensing to assess physiological responses of cattle to pre-slaughter stress, and its impact on beef quality: A review. Meat Sci. 2019, 156, 11–22. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Cullen, B.; Tongson, E.; Chauhan, S.S.; Dunshea, F.R. Artificial Intelligence Applied to a Robotic Dairy Farm to Model Milk Productivity and Quality based on Cow Data and Daily Environmental Parameters. Sensors 2020, 20, 2975. [Google Scholar] [CrossRef]
- Gorczyca, M.T.; Milan, H.F.M.; Maia, A.S.C.; Gebremedhin, K.G. Machine learning algorithms to predict core, skin, and hair-coat temperatures of piglets. Comput. Electron. Agric. 2018, 151, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, V. A Review on Application of Deep Learning in Thermography. Int. J. Eng. Manag. Res. 2017, 7, 489–493. [Google Scholar]
- Laloë, D. Available online: http://dataia.eu/sites/default/files/Outils%20com/Livestock%20and%20AI%20-%20Denis%20Laloe.pdf (accessed on 13 July 2020).
- Hoffmann, G.; Herbut, P.; Pinto, S.; Heinicke, J.; Kuhla, B.; Amon, T. Animal-related, non-invasive indicators for determining heat stress in dairy cows. Biosyst. Eng. 2019. [Google Scholar] [CrossRef]
- Barbosa Pereira, C.; Dohmeier, H.; Kunczik, J.; Hochhausen, N.; Tolba, R.; Czaplik, M. Contactless monitoring of heart and respiratory rate in anesthetized pigs using infrared thermography. PLoS ONE 2019, 14, e0224747. [Google Scholar] [CrossRef]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Morrison, R.S.; Jongman, E.C. Remotely Sensed Imagery for Early Detection of Respiratory Disease in Pigs: A Pilot Study. Animals 2020, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Jongman, E.C. Modelling and Validation of Computer Vision Techniques to Assess Heart Rate, Eye Temperature, Ear-Base Temperature and Respiration Rate in Cattle. Animals 2019, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, N.; Chaudhuri, A.; Kayikci, Y. Blockchain Applications in Food Supply Chain. In Blockchain and Supply Chain Logistics; Palgrave Pivot: Cham, Switzerland, 2020; pp. 21–29. [Google Scholar]
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F.X. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 2019, 91, 640–652. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Marai, I.; El-Darawany, A.; Fadiel, A.; Abdel-Hafez, M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Aubakir, B.; Nurimbetov, B.; Tursynbek, I.; Varol, H.A. Vital sign monitoring utilizing Eulerian video magnification and thermography. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3527–3530. [Google Scholar]
- Alghoul, K.; Alharthi, S.; Al Osman, H.; El Saddik, A. Heart rate variability extraction from videos signals: ICA vs. EVM comparison. IEEE Access 2017, 5, 4711–4719. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.D.; Dunshea, F.R. Non-contact heart rate and blood pressure estimations from video analysis and machine learning modelling applied to food sensory responses: A case study for chocolate. Sensors 2018, 18, 1802. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Development of Artificial Neural Network Models to Assess Beer Acceptability Based on Sensory Properties Using a Robotic Pourer: A Comparative Model Approach to Achieve an Artificial Intelligence System. Beverages 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Amini, M.; Abbaspour, K.C.; Khademi, H.; Fathianpour, N.; Afyuni, M.; Schulin, R. Neural network models to predict cation exchange capacity in arid regions of Iran. Eur. J. Soil Sci. 2005, 56, 551–559. [Google Scholar] [CrossRef]
- Markopoulos, A.P.; Georgiopoulos, S.; Manolakos, D.E. On the use of back propagation and radial basis function neural networks in surface roughness prediction. J. Ind. Eng. Int. 2016, 12, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Deep, K.; Jain, M.; Salhi, S. Logistics, Supply Chain and Financial Predictive Analytics: Theory and Practices; Springer: Singapore, 2019. [Google Scholar]
- Dawes, J.; Prichard, M.M. Studies of the vascular arrangements of the nose. J. Anat. 1953, 87, 311. [Google Scholar]
- Mitchell, J.; Thomalla, L.; Mitchell, G. Histological studies of the dorsal nasal, angularis oculi, and facial veins of sheep (Ovis aries). J. Morphol. 1998, 237, 275–281. [Google Scholar] [CrossRef]
- Mir, S.; Nazki, A.; Raina, R. Comparative electrocardiographic studies, and differing effects of pentazocine on ECG, heart and respiratory rates in young sheep and goats. Small Rumin. Res. 2000, 37, 13–17. [Google Scholar] [CrossRef]
- Konold, T.; Bone, G.E. Heart rate variability analysis in sheep affected by transmissible spongiform encephalopathies. BMC Res. Notes 2011, 4, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, A.; Sullivan, M.; Olm, J.; Cawdell-Smith, A.; Gaughan, J. A panting score index for sheep. Int. J. Biometeorol. 2019, 63, 973–978. [Google Scholar] [CrossRef]
- Sejian, V.; Bhatta, R.; Gaughan, J.; Malik, P.K.; Naqvi, S.; Lal, R. Sheep Production Adapting to Climate Change; Springer: Singapore, 2017. [Google Scholar]
- Sejian, V.; Bagath, M.; Krishnan, G.; Rashamol, V.; Pragna, P.; Devaraj, C.; Bhatta, R. Genes for resilience to heat stress in small ruminants: A review. Small Rumin. Res. 2019, 173, 42–53. [Google Scholar] [CrossRef]
- Mengistu, U.; Puchala, R.; Sahlu, T.; Gipson, T.; Dawson, L.; Goetsch, A. Conditions to evaluate differences among individual sheep and goats in resilience to high heat load index. Small Rumin. Res. 2017, 147, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Psota, E.T.; Mittek, M.; Pérez, L.C.; Schmidt, T.; Mote, B. Multi-pig part detection and association with a fully-convolutional network. Sensors 2019, 19, 852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.; Maclagan, S.J.; Nguyen, T.D.; Nguyen, T.; Flemons, P.; Andrews, K.; Ritchie, E.G.; Phung, D. Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring. In Proceedings of the IEEE international conference on data science and advanced Analytics (DSAA), Tokyo, Japan, 19–21 October 2017; pp. 40–49. [Google Scholar]
- Zhuang, P.; Xing, L.; Liu, Y.; Guo, S.; Qiao, Y. Marine Animal Detection and Recognition with Advanced Deep Learning Models. In Proceedings of the Working Notes of CLEF 2017—Conference and Labs of the Evaluation Forum, Dublin, Ireland, 11–14 September 2017. [Google Scholar]
- Schofield, D.; Nagrani, A.; Zisserman, A.; Hayashi, M.; Matsuzawa, T.; Biro, D.; Carvalho, S. Chimpanzee face recognition from videos in the wild using deep learning. Sci. Adv. 2019, 5, eaaw0736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tydén, A.; Olsson, S. Edge Machine Learning for Animal Detection, Classification, and Tracking. Master’s Thesis, Automatic Control. Department of Electrical Engineering, Linköping University, Linköping, Sweden, 2020; p. 49. [Google Scholar]
- Hossein, S.; Zargham, H.B.; Hamid, D.C. A new face recognition method using PCA, LDA and neural network. Int. J. Comput. Sci. Eng. 2008, 2, 218–223. [Google Scholar]
- Corkery, G.; Gonzales-Barron, U.A.; Butler, F.; Mc Donnell, K.; Ward, S. A preliminary investigation on face recognition as a biometric identifier of sheep. Trans. Asabe 2007, 50, 313–320. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, S.K. Biometric recognition for pet animal. J. Softw. Eng. Appl. 2014, 2014, 1945–3124. [Google Scholar] [CrossRef] [Green Version]
- Noviyanto, A.; Arymurthy, A.M. Automatic cattle identification based on muzzle photo using speed-up robust features approach. In Proceedings of the 3rd European Conference of Computer Science, Heraklion, Crete, Greece, 13–17 September 2007. [Google Scholar]
- Bishop-Hurley, G.; Swain, D.L.; Anderson, D.; Sikka, P.; Crossman, C.; Corke, P. Virtual fencing applications: Implementing and testing an automated cattle control system. Comput. Electron. Agric. 2007, 56, 14–22. [Google Scholar] [CrossRef]
- Campbell, D.L.; Ouzman, J.; Mowat, D.; Lea, J.M.; Lee, C.; Llewellyn, R.S. Virtual Fencing Technology Excludes Beef Cattle from an Environmentally Sensitive Area. Animals 2020, 10, 1069. [Google Scholar] [CrossRef]
- Marini, D.; Meuleman, M.D.; Belson, S.; Rodenburg, T.B.; Llewellyn, R.; Lee, C. Developing an ethically acceptable virtual fencing system for sheep. Animals 2018, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Brunberg, E.; Sørheim, K.; Bergslid, I.R.K. The ability of ewes with lambs to learn a virtual fencing system. Animal 2017, 2017, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Colditz, I.G.; Campbell, D.L. A framework to assess the impact of new animal management technologies on welfare: A case study of virtual fencing. Front. Vet. Sci. 2018, 5, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Stage | Samples | Accuracy | Error | Performance (MSE) |
---|---|---|---|---|
Training | 94 | 100% | 0% | <0.01 |
Testing | 40 | 85% | 15% | 0.10 |
Overall | 134 | 96% | 4% | - |
Stage | Samples | Observations | R | Slope | Performance (MSE) |
---|---|---|---|---|---|
Training | 94 | 188 | 0.98 | 0.94 | 72 |
Testing | 40 | 80 | 0.84 | 0.86 | 512 |
Overall | 134 | 268 | 0.94 | 0.92 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes, S.; Gonzalez Viejo, C.; Chauhan, S.S.; Joy, A.; Tongson, E.; Dunshea, F.R. Non-Invasive Sheep Biometrics Obtained by Computer Vision Algorithms and Machine Learning Modeling Using Integrated Visible/Infrared Thermal Cameras. Sensors 2020, 20, 6334. https://doi.org/10.3390/s20216334
Fuentes S, Gonzalez Viejo C, Chauhan SS, Joy A, Tongson E, Dunshea FR. Non-Invasive Sheep Biometrics Obtained by Computer Vision Algorithms and Machine Learning Modeling Using Integrated Visible/Infrared Thermal Cameras. Sensors. 2020; 20(21):6334. https://doi.org/10.3390/s20216334
Chicago/Turabian StyleFuentes, Sigfredo, Claudia Gonzalez Viejo, Surinder S. Chauhan, Aleena Joy, Eden Tongson, and Frank R. Dunshea. 2020. "Non-Invasive Sheep Biometrics Obtained by Computer Vision Algorithms and Machine Learning Modeling Using Integrated Visible/Infrared Thermal Cameras" Sensors 20, no. 21: 6334. https://doi.org/10.3390/s20216334
APA StyleFuentes, S., Gonzalez Viejo, C., Chauhan, S. S., Joy, A., Tongson, E., & Dunshea, F. R. (2020). Non-Invasive Sheep Biometrics Obtained by Computer Vision Algorithms and Machine Learning Modeling Using Integrated Visible/Infrared Thermal Cameras. Sensors, 20(21), 6334. https://doi.org/10.3390/s20216334