The Sensitivity Improvement Characterization of Distributed Strain Sensors Due to Weak Fiber Bragg Gratings
Abstract
:1. Introduction
- Frequency instability of the laser source, which affects the stability of the interference backscattered signal’s formation;
- Signal-spontaneous noise from the preamplifier (beats of the signal with spontaneous emission of the preamplifier within the optical filter’s transmission), which is several orders of magnitude higher than the preamplifier’s spontaneous-spontaneous noise (the beats of the spectral components of the preamplifier’s spontaneous emission within the optical filter’s transmission) due to the use of narrow-band filters in the receiving line [53];
- The noise of the photodetector module.
2. Theory
2.1. Signal Formation in a Phase-Sensitive Reflectometer
2.2. Signal Conditioning in a WFBG-Based System
3. Calculation
3.1. Calculation of the Signal and Noise Level in a Phase-Sensitive Reflectometer
3.2. Calculation of the Signal and Noise Levels in the WFBG System
4. Results
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Taylor, H.F.; Lee, C.E. Apparatus and Method for Fiber Optic Intrusion Sensing. U.S. Patent 5194847, 16 March 1993. [Google Scholar]
- Juarez, J.C.; Maier, E.W.; Choi, K.N.; Taylor, H.F. Distributed fiber-optic intrusion sensor system. J. Lightwave Technol. 2005, 23, 2081–2087. [Google Scholar] [CrossRef]
- Juarez, J.C.; Taylor, H.F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Appl. Opt. 2007, 46, 1968–1971. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.N.; Juarez, J.C.; Taylor, H.F. Distributed fiberoptic pressureseismic sensor for low-cost monitoring of long perimeters. Proc. SPIE 2003, 5090, 134–141. [Google Scholar] [CrossRef]
- Park, J.; Lee, W.; Taylor, H.F. A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering. Proc. SPIE 1998, 3555, 49–56. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, T.; Chen, L.; Bao, X. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Lightwave Technol. 2010, 28, 3243–3249. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, L.; Bao, X. Continuous wavelet transform for non-stationary vibration detection with phase-OTDR. Opt. Express 2017, 20, 20459–20465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bao, X. Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system. Opt. Express 2008, 16, 10240–10247. [Google Scholar] [CrossRef] [PubMed]
- Tejedor, J.; Macias-Guarasa, J.; Martins, H.F.; Piote, D.; Pastor-Graells, J.; Martin-Lopez, S.; Corredera, P.; Gonzalez-Herraez, M. A novel fiber optic based surveillance system for prevention of pipeline integrity threats. Sensors 2017, 17, 355. [Google Scholar] [CrossRef]
- Tejedor, J.; Macias-Guarasa, J.; Martins, H.F.; Pastor-Graells, J.; Martín-López, S.; Guillén, P.C.; Pauw, G.D.; Smet, F.D.; Postvoll, W.; Ahlen, C.H.; et al. Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results. J. Lightwave Technol. 2018, 36, 1052–1062. [Google Scholar] [CrossRef]
- Pastor-Graells, J.; Martins, H.F.; Garcia-Ruiz, A.; Martin-Lopez, S.; Gonzalez-Herraez, M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt. Express 2016, 24, 13121–13133. [Google Scholar] [CrossRef]
- Pastor-Graells, J.; Nuno, J.; Fernandez-Ruiz, M.R.; Garcia-Ruiz, A.; Martins, H.F.; Martin-Lopez, S.; Gonzalez-Herraez, M. Chirped-Pulse Phase-Sensitive Reflectometer Assisted by First -Order Raman Amplification. J. Lightwave Technol. 2017, 35, 4677–4683. [Google Scholar] [CrossRef]
- Shatalin, S.V.; Treschikov, V.N.; Rogers, A.J. Interferometric optical time-domain reflectometry for distributed optical-fiber sensing. Appl. Opt. 1998, 37, 5600–5604. [Google Scholar] [CrossRef]
- Alekseev, A.E.; Vdovenko, V.S.; Gorshkov, B.G.; Potapov, V.T.; Simikin, D.E. A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal. Laser Phys. 2014, 24, 115106. [Google Scholar] [CrossRef]
- Alekseev, A.E.; Vdovenko, V.S.; Gorshkov, B.G.; Potapov, V.T.; Simikin, D.E. A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal. Laser Phys. 2015, 25, 065101. [Google Scholar] [CrossRef]
- Tosoni, O.; Aksenov, S.B.; Podivilov, E.V.; Babin, S.A. Model of a fibreoptic phase-sensitive reflectometer and its comparison with the experiment. Quantum Electron. 2010, 40, 887–892. [Google Scholar] [CrossRef]
- Nesterov, E.T.; Zhirnov, A.A.; Stepanov, K.V.; Pnev, A.B.; Karasik, V.E.; Tezadov, Y.A.; Kondrashin, E.V.; Ushakov, A.B. Experimental study of influence of nonlinear effects on phase- sensitive optical time-domain reflectometer operating range. J. Phys. Conf. Ser. 2015, 584, 012028. [Google Scholar] [CrossRef]
- Zhirnov, A.A.; Stepanov, K.V.; Chernutsky, A.O.; Fedorov, A.K.; Nesterov, E.T.; Svelto, C.; Pnev, A.B.; Karasik, V.E. Influence of the Laser Frequency Drift in Phase-Sensitive Optical Time Domain Reflectometry. Opt. Spectrosc. 2019, 127, 656–663. [Google Scholar] [CrossRef]
- Nikitin, S.P.; Kuzmenkov, A.I.; Gorbulenko, V.V.; Nanii, O.E.; Treshchikov, V.N. Distributed temperature sensor based on a phase-sensitive optical time-domain Rayleigh reflectometer. Laser Phys. 2018, 28, 085107. [Google Scholar] [CrossRef]
- Yatseev, V.A.; Zotov, A.M.; Butov, O.V. Use of a chirped pulse for restoring the phase in a coherent reflectometer. Foton Express 2019, 6, 46–47. [Google Scholar]
- Hartog, A.H.; Liokumovich, L.B.; Ushakov, N.A.; Kotov, O.I.; Dean, T.; Cuny, T.; Constantinou, A.; Englich, F.V. The use of multi-frequency acquisition to significantly improve the quality of fibre-optic-distributed vibration sensing. Geophys. Prospect. 2018, 66, 192–202. [Google Scholar] [CrossRef]
- Hartog, A.H.; Liokumovich, L.B. Phase Sensitive Coherent otdr with Multi-Frequency Interrogation. U.S. Patent WO2013066654 A1, 22 October 2012. [Google Scholar]
- Zhu, F.; Zhang, X.; Xia, L.; Guo, Z.; Zhang, Y. Active compensation method for light source frequency drifting in Phi-OTDR sensing system. IEEE Photon. Technol. Lett. 2015, 27, 2523–2526. [Google Scholar] [CrossRef]
- Wu, H.; Yang, M.; Yang, S.; Lu, H.; Wang, C.; Rao, Y. A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network. IEEE Access 2020, 8, 119448–119457. [Google Scholar] [CrossRef]
- Tu, G.; Zhang, X.; Zhang, Y.; Zhu, F.; Xia, L.; Nakarmi, B. The development of an phi-OTDR system for quantitative vibration measurement. IEEE Photon. Technol. Lett. 2015, 27, 1349–1352. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, F.; Wang, X.; Pan, Y.; Sun, Z.; Hua, J.; Zhang, X. Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR. IEEE Photon. Technol. Lett. 2015, 27, 1884–1887. [Google Scholar] [CrossRef]
- Kersey, A.D.; Dandridge, A.; Vohra, S.T. Coherent Reflectometric Fiber Bragg Grating Sensor Array. U.S. Patent US6285806B1, 4 September 2001. [Google Scholar]
- Popov, S.M.; Butov, O.V.; Kolosovskiy, A.O.; Voloshin, V.V.; Vorob’ev, I.L.; Vyatkin, M.Y.; Fotiadi, A.A.; Chamorovskiy, Y.K. Optical fibres with arrays of FBG: Properties and application. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium–Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017; pp. 1568–1573. [Google Scholar] [CrossRef]
- Guo, H.; Liu, F.; Yuan, Y.; Yu, H.; Yang, M. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber. Opt. Express 2015, 23, 4829–4838. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, I.A.; Butov, O.V.; Voloshin, V.V.; Vorob’ev, I.L.; Vyatkin, M.Y.; Kolosovskii, A.O.; Popov, S.M.; Chamorovskii, Y.K. Optical Fiber with Distributed Bragg-Type Reflector. J. Commun. Technol. Electron. 2016, 61, 639–645. [Google Scholar] [CrossRef]
- Wang, Y.M.; Gong, J.M.; Wang, D.Y.; Dong, B.; Bi, W.; Wang, A. A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings. IEEE Photon. Technol. Lett. 2011, 23, 70–72. [Google Scholar] [CrossRef]
- Hu, C.Y.; Wen, H.Q.; Bai, W. A Novel Interrogation System for Large Scale Sensing Network with Identical Ultra-Weak Fiber Bragg Gratings. J. Lightwave Technol. 2014, 32, 1406–1411. [Google Scholar] [CrossRef]
- Wang, C.; Shang, Y.; Liu, X.H.; Wang, C.; Yu, H.H.; Jiang, D.S.; Peng, G.D. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber bragg gratings. Opt. Express 2015, 23, 29038–29046. [Google Scholar] [CrossRef]
- Wang, X.C.; Yan, Z.J.; Wang, F.; Sun, Z.Y.; Mou, C.B.; Zhang, X.P.; Zhang, L. SNR enhanced distributed vibration fiber sensing system employing polarization OTDR and ultraweak FBGs. IEEE Photon. J. 2015, 7, 6800511. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, Y.; Zhu, F.; Cao, C.; Zhang, X. The performance limit of Φ-OTDR sensing system enhanced with ultra-weak fiber Bragg grating array. Proc. SPIE 2015, 9620, 962003. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, Y.; Xia, L.; Wu, X.; Zhang, X. Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber bragg grating array. J. Lightwave Technol. 2015, 33, 4775–4780. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Z.; Shan, Y.; Sun, Z.; Fu, S.; Zhang, Y. Enhanced Φ-OTDR system for quantitative strain measurement based on ultra-weak fiber Bragg grating array. Opt. Eng. 2016, 55, 054103. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Shan, Y.; Li, Y.; Wang, F.; Zeng, J.; Zhang, Y. A high performance distributed optical fiber sensor based on Φ-OTDR for dynamic strain measurement. IEEE Photon. J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J. Distributed weak fiber Bragg grating vibration sensing system based on 3 × 3 fiber coupler. Photon. Sens. 2018, 8, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tong, Y.; Fu, X.; Wang, J.; Guo, Q.; Yu, H.; Bao, X. Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings. Opt. Express 2018, 26, 17437–17446. [Google Scholar] [CrossRef]
- Liu, T.; Wang, F.; Zhang, X.; Yuan, Q.; Niu, J.; Zhang, L.; Wei, T. Interrogation of ultra-weak FBG array using double-pulse and heterodyne detection. IEEE Photon. Technol. Lett. 2018, 30, 677–680. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Li, L.; Guo, H.; Yu, H.; Wen, H.; Yang, M. Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Shan, Y.; Ji, W.; Dong, X.; Cao, L.; Zabihi, M.; Wang, Q.; Zhang, Y.; Zhang, X. An Enhanced Distributed Acoustic Sensor Based on UWFBG and Self-Heterodyne Detection. J. Lightwave Technol. 2019, 37, 2700–2705. [Google Scholar] [CrossRef]
- Liu, T.; Li, H.; Ai, F.; Wang, J.; Fan, C.; Luo, Y.; Yan, Z.; Liu, D.; Sun, Q. Ultra-high Resolution Distributed Strain Sensing based on Phase-OTDR. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Zhang, Y.X.; Fu, S.Y.; Chen, Y.S.; Ding, Z.W.; Shan, Y.Y.; Wang, F.; Chen, M.M.; Zhang, X.P.; Meng, Z. A visibility enhanced broadband phase-sensitive OTDR based on the UWFBG array and frequency-division-multiplexing. Opt. Fiber Technol. 2019, 53, 101995. [Google Scholar] [CrossRef]
- Lee, X.; Che, Q.; Liu, X.; Zhu, P.; Wen, H. Effects of weak fiber Bragg gratings on a distributed vibration sensing system based on phase-sensitive optical time-domain reflectometry. Opt. Eng. 2019, 58, 087103. [Google Scholar] [CrossRef]
- Gan, W.; Li, S.; Li, Z.; Sun, L. Identification of ground intrusion in underground structures based on distributed structural vibration detected by ultra-weak FBG sensing technology. Sensors 2019, 19, 2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicke, K.; Eisermann, R.; Chruscicki, S. Enhanced distributed fiber optic vibration sensing and simultaneous temperature gradient sensing using traditional C-OTDR and structured fiber with scattering dots. Sensors 2019, 19, 4114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yatseev, V.A.; Zotov, A.M.; Butov, O.V. Combined Frequency and Phase domain time-gated reflectometry based on a fiber with reflection points for absolute measurements. Results Phys. 2020, 19, 103485. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, B.; Zheng, H.; Ye, Q.; Pan, Z.; Cai, H.; Qu, R.; Fang, Z.; Zhao, H. Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- FiberPatrol FP1150. Available online: https://senstar.com/products/buried-sensors/fiberpatrol-fp1150-for-pipeline-tpi/ (accessed on 23 October 2020).
- Perimeter Intrusion Detection and Security. Available online: https://www.optasense.com/wp-content/uploads/2017/02/Perimeter-Intrusion-Detection-and-Security_Brochure_A4_Digital.pdf (accessed on 23 October 2020).
- Desurvire, E. Erbium-Doped Fiber Amplifiers: Principle and Applications; John Wiley and Sons. Inc.: New York, NY, USA, 1994. [Google Scholar]
- Martins, H.F.; Martin-Lopez, S.; Corredera, P.; Salgado, P.; Frazão, O.; González-Herráez, M. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry. Opt. Lett. 2013, 38, 872–874. [Google Scholar] [CrossRef]
- Popov, S.M.; Butov, O.V.; Kolosovskii, A.O.; Voloshin, V.V.; Vorob’ev, I.L.; Isaev, V.A.; Vyatkin, M.Y.; Fotiadi, A.A.; Chamorovsky, Y.K. Optical fibres and fibre tapers with an array of Bragg gratings. Quantum Electron. 2019, 49, 1127–1131. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, C.; Li, L.; Liang, S.; Li, Q.; Lü, Q.; Ding, X.; Cao, Q. Influences of laser source on phase sensitivity optical time-domain reflectometer-based distributed intrusion sensor. Appl. Opt. 2014, 53, 4645–4650. [Google Scholar] [CrossRef]
- Kowarik, S.; Hussels, M.T.; Chruscicki, S.; Münzenberger, S.; Lämmerhirt, A.; Pohl, P.; Schubert, M. Fiber Optic Train Monitoring with Distributed Acoustic Sensing: Conventional and Neural Network Data Analysis. Sensors 2020, 20, 450. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.K.; Anufriev, M.N.; Zhirnov, A.A.; Stepanov, K.V.; Nesterov, E.T.; Namiot, D.E.; Karasik, V.E.; Pnev, A.B. Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems. Rev. Sci. Instrum. 2016, 87, 036107. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wang, Y.; Zhao, L.; Fan, Z. An event recognition method for Φ-otdr sensing system based on deep learning. Sensors 2019, 19, 3421. [Google Scholar] [CrossRef] [Green Version]
- Kibblewhite, A.C. Attenuation of sound in marine sediments: A review with emphasis on new low-frequency data. J. Acoust. Soc. Am. 1989, 86, 716–738. [Google Scholar] [CrossRef]
- Taherzadeh, S.; Attenborough, K. Deduction of ground impedance from measurements of excess attenuation spectra. J. Acoust. Soc. Am. 1999, 105, 2039–2042. [Google Scholar] [CrossRef]
Parameter | WFBG-OTDR |
---|---|
Reflectivity, % | From 0.001 to 1, depending on needed sensor length [35] |
Reflectivity instability (relative), % | <15 |
Central wavelength | Similar to the laser source of the system |
Central wavelength instability | Less than 10% of WFBG spectral width |
Spectral width, nm | Better, not less than 1 to avoid temperature and strain influence on the reflectivity spectrum. Fiber optic cable which is usually used for sensor installation provides some protection from external damaging influences, but some wavelength shifts due to seasons of the year or slow ground movements are still possible. The wide spectrum of WFBG reduces their effect on reflectivity changes and makes easier the process of laser wavelength and reflectivity spectrum matching. |
Parameter | φ-OTDR | wFBG-OTDR |
---|---|---|
Resolution, m | 20 (determined by the duration of the probe pulse) | 20 (determined by the distance between the gratings) |
Fiber length at PZT, m | 22 | 20 |
Fiber strain range at PZT, nm | From 10 to 5000 | From 5 to 100 |
Range of supplied frequencies, Hz | 20, 100, 400 | 20, 100, 400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanov, K.V.; Zhirnov, A.A.; Chernutsky, A.O.; Koshelev, K.I.; Pnev, A.B.; Lopunov, A.I.; Butov, O.V. The Sensitivity Improvement Characterization of Distributed Strain Sensors Due to Weak Fiber Bragg Gratings. Sensors 2020, 20, 6431. https://doi.org/10.3390/s20226431
Stepanov KV, Zhirnov AA, Chernutsky AO, Koshelev KI, Pnev AB, Lopunov AI, Butov OV. The Sensitivity Improvement Characterization of Distributed Strain Sensors Due to Weak Fiber Bragg Gratings. Sensors. 2020; 20(22):6431. https://doi.org/10.3390/s20226431
Chicago/Turabian StyleStepanov, Konstantin V., Andrey A. Zhirnov, Anton O. Chernutsky, Kirill I. Koshelev, Alexey B. Pnev, Alexey I. Lopunov, and Oleg V. Butov. 2020. "The Sensitivity Improvement Characterization of Distributed Strain Sensors Due to Weak Fiber Bragg Gratings" Sensors 20, no. 22: 6431. https://doi.org/10.3390/s20226431
APA StyleStepanov, K. V., Zhirnov, A. A., Chernutsky, A. O., Koshelev, K. I., Pnev, A. B., Lopunov, A. I., & Butov, O. V. (2020). The Sensitivity Improvement Characterization of Distributed Strain Sensors Due to Weak Fiber Bragg Gratings. Sensors, 20(22), 6431. https://doi.org/10.3390/s20226431