High-Resolution Ultrasound Imaging Enabled by Random Interference and Joint Image Reconstruction
Abstract
:1. Introduction
2. Background
2.1. Effect of Random Interference
2.2. Compressive Sensing
3. Method
3.1. Observation Model
3.2. Joint Image Reconstruction
4. Results
4.1. Simulation Study
4.2. Experimental Study
4.2.1. Subarray Imaging
4.2.2. Single Wire Study
4.2.3. Tissue-Mimicking Phantom Study
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Algorithm A1. Pseudocode for random interference and joint image reconstruction. |
Step 1: Random excitation signals: Input:Number-of-Elements, Binary-Sequence-Length, Half-Sine-Chirp Output:Random-Excitation-Signals Initialization:Number-of-Elements := 128; Binary-Sequence-Length := 13; Half-Sine-Chirp; Begin Algorithm Random-Excitation-Signals := [] for (Array-Element := 1 to Number-of-Elements) do Binary-Sequence := Generate random sequence of [1 −1] of length 13 Peaks-and-Valleys := [] for (Sequence-Element := 1 to Binary-Sequence-Length) do Peak-or-Valley := Half-Sine-Chirp * Binary-Sequence[Sequence-Element] Peaks-and-Valleys := [Peaks-and-Valleys, Peak-or-Valley] end for Random-Excitation-Signals[Array-Element, :] := Peaks-and-Valleys end for return Random-Excitation-Signals Step 2: Region of Interest (ROI) Input: ROI-Lateral, ROI-Axial, Number-of-Elements, Element-Width, Element-Height, Kerf Output: Spatial-Points Initialization: ROI-Lateral := [−10, 10]; ROI-Axial := [35, 55]; Number-of-Elements := 128; Element-Height := 4.5 mm; Element-Width := 0.27 mm; Kerf := 0.03 mm; Resolution := 0.25 mm; Begin Algorithm Spatial-Points := [] Axial-Points := [ROI-Lateral [1] : Resolution : ROI-Lateral[2]] Lateral-Points := [ROI-Axial[1] : Resolution : ROI-Axial[2]] for (point-ax := 1 to length(Axial-Points)) do for (point-la := 1 to length(Lateral-Points)) do Spatial-Points := := [Spatial-Points ([Axial-Points(point-ax), 0, Lateral-Points(point-la)])] end for end for return Spatial-Points Step 3: A priori information (Transmission matrices) Input: Number-of-Elements, Random-Excitation-Signals Output: Transmission-Matrix Initialization: Number-of-Elements := 128; Random-Excitation-Signals; Spatial-Points; //The following code requires Field ii ultrasound simulation software (calc_scat_multi function). Begin Algorithm Define simulation environment Define transducer array Tx Assign Random-Excitation-Signals to the elements of sensor array. for (Array-Element := 1 to Number-of-Elements) do Transmission-Matrix := [] for (Spatial-Point := 1 to length(Spatial-Points)) do //Simulate RF-signals reflected off a single scatterer at Spatial-Point //The RF-signals can be generated in advance [v, t] := calc_scat_multi(Tx, Tx, Spatial-Point, 1) Transmission-Matrix := [Transmission-Matrix, v[: , Array-Element]] end for return Transmission-Matrix//Transmission matrix for an Array-Element end for Step 4: Joint image reconstruction Input: Transmission-Matrix, Measurements Output: Hires-Image Initialization: Transmission-Matrices; Measurements; Spatial-Points; //The following code requires Yall1 algorithm (yall1 function) Begin Algorithm Tall-Matrix := [] Tall-Measurements := [] for (Array-Element := 1 to Number-of-Elements) do Tall-Matrix := [Tall-Matrix, Transmission-Matrix[Array-Element]] Tall-Measurements := [Tall-Measurements, Measurements[Array-Element]] end for Hires-Image := yall1(Tall-Matrix, Tall-Measurements) |
References
- Steinberg, B. Digital beamforming in ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1992, 39, 716–721. [Google Scholar] [CrossRef]
- Johnson, J.; Karaman, M.; Khuri-Yakub, P. Synthetic phased array image formation and restoration. IEEE Int. Conf. Acoust. Speech Signal Process. 2002, 3, III-2885–III-2888. [Google Scholar]
- Szabo, T. Diagnostic Ultrasound Imaging: Inside Out; Academic: Boston, MA, USA, 2014. [Google Scholar]
- Ng, A.; Swanevelder, J. Resolution in ultrasound imaging. Contin. Educ. Anaesth. Crit. Care Pain 2011, 11, 186–192. [Google Scholar] [CrossRef]
- Maznev, A.A.; Wright, O.B. Upholding the diffraction limit in the focusing of light and sound. Wave Motion 2017, 68, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J.W. Some fundamental properties of speckle. J. Opt. Soc. Am. 1976, 66, 1145–1150. [Google Scholar] [CrossRef]
- Burckhardt, C.B. Speckle in ultrasound B-mode scans. IEEE Trans. Sonics Ultrason. 1978, 25, 1–6. [Google Scholar] [CrossRef]
- Abbott, J.G.; Thurstone, F.L. Acoustic speckle: Theory and experimental analysis. Ultrasound Imag. 1979, 1, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Salazar, C.A.; Castro-Ospina, A.E.; Becerra, M.A.; Delgado-Trejos, E. Speckle Noise Reduction in Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview. IEEE Access 2020, 8, 15983–15999. [Google Scholar] [CrossRef]
- Ortiz, S.H.C.; Chiu, T.; Fox, M.D. Ultrasound image enhancement: A review. Biomed. Signal Process. Control. 2012, 7, 419–428. [Google Scholar] [CrossRef]
- Dutt, V.; Greenleaf, J. Adaptive speckle reduction filter for log-compressed B-scan images. IEEE Trans. Med Imaging 1996, 15, 802–813. [Google Scholar] [CrossRef]
- Ranjani, J.J.; Chithra, M.S. Bayesian denoising of ultrasound images using heavy-tailed Levy distribution. Image Process. IET 2015, 9, 338–345. [Google Scholar] [CrossRef]
- Viessmann, O.M.; Eckersley, R.J.; Christensen-Jeffries, K.; Tang, M.X.; Dunsby, C. Acoustic super-resolution with ultrasound and microbubbles. Phys. Med. Biol. 2013, 58, 6447–6458. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lavery, L.; Kim, K. Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, P.; Trzasko, J.D.; Manduca, A.; Huang, R.; Kadirvel, R.; Kallmes, D.F.; Chen, S. Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018, 65, 149–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowicki, A.; Klimonda, Z.; Lewandowski, M.; Litniewski, J.; Lewin, P.; Trots, I. Comparison of sound fields generated by different coded excitations—Experimental results. Ultrasonics 2006, 44, 121–129. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, S.; Sohn, H.-Y.; Song, T.-K.; Yoo, Y.M. Coded excitation for ultrasound tissue harmonic imaging. Ultrasonics 2010, 50, 613–619. [Google Scholar] [CrossRef]
- Clement, G.T.; Huttunen, J.; Hynynen, K. Superresolution ultrasound imaging using back-projected reconstruction. J. Acoust. Soc. Am. 2005, 118, 3953–3960. [Google Scholar] [CrossRef] [Green Version]
- Kruizinga, P.; Van Der Meulen, P.; Fedjajevs, A.; Mastik, F.; Springeling, G.; De Jong, N.; Bosch, J.G.; Leus, G. Compressive 3D ultrasound imaging using a single sensor. Sci. Adv. 2017, 3, e1701423. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.D.; Nikitichev, D.I.; Treeby, B.E.; Cox, B.T. Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles. Appl. Phys. Lett. 2017, 110, 094102. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.D.; Cox, B.; Treeby, B.E. Stackable acoustic holograms. Appl. Phys. Lett. 2020, 116, 261901. [Google Scholar] [CrossRef]
- Ni, P.; Lee, H.-N. High-Resolution Ultrasound Imaging Using Random Interference. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020, 67, 1785–1799. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.; Beard, P. Imaging techniques: Super-resolution ultrasound. Nature 2015, 527, 451–452. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.A. Linear description of ultrasound imaging systems. In Notes for the International Summer School on Advanced Ultrasound Imaging; Technical University of Denmark: Lyngby, Denmark, 1999. [Google Scholar]
- Jensen, J.A.; Svendsen, N.B. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1992, 39, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.A. Field: A program for simulating ultrasound systems. Med Biol. Eng. Comput. 1996, 34, 351–353. [Google Scholar]
- Candes, E.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.; Romberg, J. Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 2006, 6, 227–254. [Google Scholar] [CrossRef]
- Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Oliver, J.; Lee, W.; Park, S.; Lee, H.-N. Improving resolution of miniature spectrometers by exploiting sparse nature of signals. Opt. Express 2012, 20, 2613–2625. [Google Scholar] [CrossRef]
- Jang, H.; Yoon, C.; Chung, E.; Choi, W.; Lee, H.-N. Speckle suppression via sparse representation for wide-field imaging through turbid media. Opt. Express 2014, 22, 16619–16628. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-B.; Jang, H.; Park, S.; Song, Y.M. COMPU-EYE: A high resolution computational compound eye. Opt. Express 2016, 24, 2013. [Google Scholar] [CrossRef]
- Baboulaz, L.; Dragotti, P.L. Exact Feature Extraction Using Finite Rate of Innovation Principles with an Application to Image Super-Resolution. IEEE Trans. Image Process. 2009, 18, 281–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, K.V.; Cho, M.; Kruger, A.; Xu, W. Spectral Super-Resolution with Prior Knowledge. IEEE Trans. Signal Process. 2015, 63, 5342–5357. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Sung, K.; Nayak, K.S.; Kim, E.Y.; Ye, J.C. k-t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. 2009, 61, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Herman, M.A.; Strohmer, T. High-Resolution Radar via Compressed Sensing. IEEE Trans. Signal Process. 2009, 57, 2275–2284. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, Y. Alternating direction algorithms for `l1-problems in compressive sensing. SIAM J. Sci. Comput. 2011, 33, 250–278. [Google Scholar] [CrossRef]
- Nikolov, S.I. User’s Guide to the Beamformation Toolbox; Technical report Department of Information Technology; Technical University of Denmark: Lyngby, Denmark, 2000. [Google Scholar]
- Rekha, C.K.; Manjunathachari, K.; Rao, G.V.S. Speckle noise reduction in 3D ultrasound images—A review. In Proceedings of the 2015 International Conference on Signal Processing and Communication Engineering Systems, Guntur, India, 2–3 January 2015; pp. 257–259. [Google Scholar]
- Coupe, P.; Hellier, P.; Kervrann, C.; Barillot, C. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 2009, 18, 2221–2229. [Google Scholar] [CrossRef] [Green Version]
- Avanaki, K.; Zafar, M.; Mozaffarzadeh, M.; Hariri, A.; Haung, X.; Orooji, M.; Avanaki, K. A Novel Dictionary-Based Image Reconstruction for Photoacoustic Computed Tomography. Appl. Sci. 2018, 8, 1570. [Google Scholar]
- Mozaffarzadeh, M. Linear-array photoacoustic imaging using minimum variance-based delay multiply and sum adaptive beamforming algorithm. J. Biomed. Opt. 2018, 23, 1–15. [Google Scholar] [CrossRef]
- Merabet, L.; Robert, S.; Prada, C. 2-D and 3-D Reconstruction Algorithms in the Fourier Domain for Plane-Wave Imaging in Nondestructive Testing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019, 66, 772–7888. [Google Scholar] [CrossRef]
- Van Reeth, E.; Tham, I.W.K.; Tan, C.H.; Poh, C.L. Super-resolution in magnetic resonance imaging: A review. Concepts Magn. Reson. Part A 2012, 11, 306–325. [Google Scholar] [CrossRef]
Method | MSE | PSNR | SNR | SSIM |
---|---|---|---|---|
1. Conventional focused B-mode | 0.328 | 4.84 | −0.826 | −0.104 |
2. Synthetic aperture beamforming | 0.153 | 8.16 | 2.5 | 0.163 |
3. Interference-based compound reconstruction [15] | 0.0243 | 16.1 | 10.5 | 0.897 |
4. Interference-based joint reconstruction | 0.000469 | 33.3 | 27.6 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, P.; Lee, H.-N. High-Resolution Ultrasound Imaging Enabled by Random Interference and Joint Image Reconstruction. Sensors 2020, 20, 6434. https://doi.org/10.3390/s20226434
Ni P, Lee H-N. High-Resolution Ultrasound Imaging Enabled by Random Interference and Joint Image Reconstruction. Sensors. 2020; 20(22):6434. https://doi.org/10.3390/s20226434
Chicago/Turabian StyleNi, Pavel, and Heung-No Lee. 2020. "High-Resolution Ultrasound Imaging Enabled by Random Interference and Joint Image Reconstruction" Sensors 20, no. 22: 6434. https://doi.org/10.3390/s20226434
APA StyleNi, P., & Lee, H. -N. (2020). High-Resolution Ultrasound Imaging Enabled by Random Interference and Joint Image Reconstruction. Sensors, 20(22), 6434. https://doi.org/10.3390/s20226434