Intelligent Calibration of Static FEA Computations Based on Terrestrial Laser Scanning Reference
Abstract
:1. Introduction
1.1. Development of Classical FEA Calibration
1.2. FEA Computation and Calibration with Machine Learning
1.3. Deep Learning
2. Motivation and Methodology
2.1. Motivation
2.2. Framework
2.3. LSTM Implementation
3. Model
3.1. Mathematical Description
3.2. Neural Network Model
3.3. Training Data
3.3.1. Post-Processing Images of FEA Computation
3.3.2. Data Processing
4. Results and Discussion
4.1. Analysis of FEA Results
4.2. Evaluation of Prediction
4.3. Discussion of Calibration
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FEA | Finite element analysis |
LSTM | Long short-term memory |
NN | Neural network |
CNN | Convolutional neural network |
RNN | Recurrent neural network |
TLS | Terrestrial laser scanning |
MSE | Mean square error |
SSIM | Structural similarity |
Nomenclatures
Output result from standard FEA computation before calibration | |
Output result from reference method before calibration | |
Deviation between standard FEA and reference outputs before calibration | |
Predicted deviation value with deep learning | |
Calibrated output results | |
Sigmoid function | |
Weight of the respective gate neurons | |
Bias of the respective layer | |
Output from the forget gate layer of LSTM | |
Output from the store gate layer of LSTM | |
Output from the update gate layer of LSTM | |
Output from the output gate layer of LSTM | |
Predicted output from LSTM model | |
Hidden state in LSTM model | |
Output from the forget gate layer of convolutional LSTM | |
Output from the store gate layer of convolutional LSTM | |
Output from the update gate layer of convolutional LSTM | |
Output from the output gate layer of convolutional LSTM | |
Hidden state in convolutional LSTM model | |
Local mean in SSIM | |
Variable in SSIM | |
Covariance of and |
References
- Do, D.T.T.; Lee, D.; Lee, J. Material optimization of functionally graded plates using deep neural network and modified symbiotic organisms search for eigenvalue problems. Compos. Part B Eng. 2019, 159, 300–326. [Google Scholar] [CrossRef]
- Suman, S.; Khan, S.Z.; Das, S.K.; Chand, S.K. Slope stability analysis using artificial intelligence techniques. Nat. Hazards 2016, 84, 727–748. [Google Scholar] [CrossRef]
- Stoffel, M.; Bamer, F.; Markert, B. Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled Struct. 2018, 131, 102–106. [Google Scholar] [CrossRef]
- Wang, K.; Sun, W.C. A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning. Comput. Methods Appl. Mech. Eng. 2018, 334, 337–380. [Google Scholar] [CrossRef]
- Abrahamsson, T.J.S.; Kammer, D.C. FEM calibration with FRF damping equalization. In Proceedings of the IMAC XXXII, Orlando, FL, USA, 3–6 February 2014. [Google Scholar]
- Abrahamsson, T.J.S.; Kammer, D.C. Finite element model calibration using frequency responses with damping equalization. Mech. Syst. Signal Process. 2015, 62, 218–234. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, J.; Zheng, D.; Tong, F.; Zheng, S. The dynamic finite element model calibration method of concrete dams based on strong-motion records and multivariate relevant vector machines. J. Vibroeng. 2016, 18, 3811–3828. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsson, T.J.S.; Bartholdsson, F.; Hallqvist, M.; Olsson, K.H.A.; Olsson, M.; Sällström, Å. Calibration and validation of a car subframe finite element model using frequency responses. In Topics in Modal Analysis; Mains, M., Ed.; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2015; Volume 10, pp. 9–22. [Google Scholar]
- Osmancikli, G.; Bayraktar, A.; Türker, T.; Uçak, Ş.; Mosallam, A. Finite element model calibration of precast structures using ambient vibrations. Constr. Build. Mater. 2015, 93, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, A.Q.; Li, J. Progressive finite element model calibration of a long-span suspension bridge based on ambient vibration and static measurements. Eng. Struct. 2010, 32, 2546–2556. [Google Scholar] [CrossRef]
- Garo, A.; Arnoux, P.J.; Wagnac, E.; Aubin, C.E. Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Med. Biol. Eng. Comput. 2011, 49, 1371–1379. [Google Scholar] [CrossRef]
- Formisano, A.; Di Lorenzo, G.; Krstevska, L.; Landolfo, R. Fem Model Calibration of Experimental Environmental Vibration Tests on Two Churches Hit by L’Aquila Earthquake. Int. J. Archit. Herit. 2020. [Google Scholar] [CrossRef]
- Carranza, I.; Crocombe, A.D.; Mohagheghian, I.; Smith, P.A.; Sordon, A.; Meeks, G.; Santoni, C. Characterising and modelling the mechanical behaviour of polymeric foams under complex loading. J. Mater. Sci. 2019, 54, 11328–11344. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Omenzetter, P.; Beskhyroun, S. Calibration of the finite element model of a twelve-span prestressed concrete bridge using ambient vibration data. In Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014; pp. 1388–1395. [Google Scholar]
- Erdogan, Y.S. Discrete and Continuous Finite Element Models and Their Calibration via Vibration and Material Tests for the Seismic Assessment of Masonry Structures. Int. J. Archit. Herit. 2017, 11, 1026–1045. [Google Scholar] [CrossRef]
- Jones, E.M.C.; Carroll, J.D.; Karlson, K.N.; Kramer, S.L.B.; Lehoucq, R.B.; Reu, P.L.; Turner, D.Z. Parameter covariance and non-uniqueness in material model calibration using the Virtual Fields Method. Comput. Mater. Sci. 2018, 152, 268–290. [Google Scholar] [CrossRef]
- Gu, G.X.; Chen, C.T.; Richmond, D.J.; Buehler, M.J. Bioinspired hierarchical composite design using machine learning: Simulation, additive manufacturing, and experiment. Mater. Horiz. 2018, 5, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.X.; Chen, C.T.; Buehler, M.J. De novo composite design based on machine learning algorithm. Extrem. Mech. Lett. 2018, 18, 19–28. [Google Scholar] [CrossRef]
- Moore, B.A.; Rougier, E.; O’Malley, D.; Srinivasan, G.; Hunter, A.; Viswanathan, H. Predictive modeling of dynamic fracture growth in brittle materials with machine learning. Comput. Mater. Sci. 2018, 148, 46–53. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C.C.; Guo, Y. Model identification of reduced order fluid dynamics systems using deep learning. Int. J. Numer. Methods Fluids 2018, 86, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Marwala, T. Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics; Springer: London, UK, 2010. [Google Scholar]
- Capuano, G.; Rimoli, J.J. Smart finite elements: A novel machine learning application. Comput. Methods Appl. Mech. Eng. 2019, 345, 363–381. [Google Scholar] [CrossRef]
- Nie, Z.; Jiang, H.; Kara, L.B. Stress field prediction in cantilevered structures using convolutional neural networks. J. Comput. Inf. Sci. Eng. 2020, 20, 011002. [Google Scholar] [CrossRef] [Green Version]
- Oishi, A.; Yagawa, G. Computational mechanics enhanced by deep learning. Comput. Methods Appl. Mech. Eng. 2017, 327, 327–351. [Google Scholar] [CrossRef]
- Javadi, A.A.; Tan, T.P.; Zhang, M. Neural network for constitutive modelling in finite element analysis. J. Comput. Assist. Mech. Eng. Sci. 2003, 10, 375–381. [Google Scholar]
- Javadi, A.A.; Faramarzi, A.; Ahangar-Asr, A.; Mehravar, M. Finite element analysis of three dimensional shallow foundation using artificial intelligence based constitutive model. In Proceedings of the 13th International Conference on Computing in Civil and Building Engineering, Nottingham, UK, 30 June–2 July 2010. [Google Scholar]
- Balu, A.; Nallagonda, S.; Xu, F.; Krishnamurthy, A.; Hsu, M.C.; Sarkar, S. A Deep Learning Framework for Design and Analysis of Surgical Bioprosthetic Heart Valves. Sci. Rep. 2019, 9, 18560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Guerrero, J.D.; Ruperez-Moreno, M.J.; Martinez-Martinez, F.; Lorente-Garrido, D.; Serrano-Lopez, A.J.; Monserrat, C.; Martinez-Sanchis, S.; Martinez-Sober, M. Machine Learning for Modeling the Biomechanical Behavior of Human Soft Tissue. In Proceedings of the IEEE International Conference on Data Mining Workshops, Barcelona, Spain, 12–15 December 2016; pp. 247–253. [Google Scholar]
- Roewer-despres, F.; Khan, N.; Stavness, I. Towards Finite-Element Simulation Using Deep Learning. In Proceedings of the 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Lisboa, Portugal, 26–29 March 2018. [Google Scholar]
- Liang, L.; Liu, M.; Martin, C.; Sun, W. A machine learning approach as a surrogate of finite element analysis–based inverse method to estimate the zero-pressure geometry of human thoracic aorta. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e3103. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Liu, M.; Martin, C.; Sun, W. A deep learning approach to estimate stress distribution: A fast and accurate surrogate of finite-element analysis. J. R. Soc. Interface 2018, 15, 20170844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.; Chen, R.; Farimani, A.B.; Zhang, Y.J. Reaction diffusion system prediction based on convolutional neural network. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Liu, Y.; Burlina, P.; Xu, X.; Bressler, N.M.; Wong, T.Y. AI for medical imaging goes deep. Nat. Med. 2018, 24, 539–540. [Google Scholar] [CrossRef]
- Hossain, M.d.Z.; Sohel, F.; Shiratuddin, M.F.; Laga, H. A comprehensive survey of deep learning for image captioning. ACM Comput. Surv. 2019, 51, 118. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Li, B.; Li, Q.; Zhao, H.P.; Feng, X.Q. Deep neural network method for predicting the mechanical properties of composites. Appl. Phys. Lett. 2019, 115, 161901. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Cui, S.; Luo, C.; Li, C.; Zhuang, Z. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning. Comput. Methods Appl. Mech. Eng. 2019, 347, 735–753. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Li, T.; Liu, J.; Du, S.; Yang, X.; Zhang, J. Urban flow prediction from spatiotemporal data using machine learning: A survey. Inf. Fusion 2020, 59, 1–12. [Google Scholar] [CrossRef]
- Hosseini, M.; Maida, A.S.; Hosseini, M.; Raju, G. Inception-inspired LSTM for Next-frame Video Prediction. arXiv 2019, arXiv:1909.05622. [Google Scholar]
- Xu, H.; Gao, Y.; Yu, F.; Darrell, T. End-to-end learning of driving models from large-scale video datasets. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016; pp. 3530–3538. [Google Scholar]
- Smeets, J.B.J.; Brenner, E. Prediction of a moving target’s position in fast goal-directed action. Biol. Cybern. 1995, 73, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Finn, C.; Levine, S. Deep visual foresight for planning robot motion. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 2786–2793. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–10 December 2015; pp. 802–810. [Google Scholar]
- Xu, Z.; Du, J.; Wang, J.; Jiang, C.; Ren, Y. Satellite Image Prediction Relying on GAN and LSTM Neural Networks. In Proceedings of the IEEE International Conference on Communications, Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Vetro, A.; Christopoulos, C.; Sun, H. Video transcoding architectures and techniques: An overview. IEEE Signal Process. Mag. 2003, 20, 18–29. [Google Scholar] [CrossRef]
- Zhang, K.; Chao, W.L.; Sha, F.; Grauman, K. Video summarization with long short-term memory. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 766–782. [Google Scholar]
- Srivastava, N.; Mansimov, E.; Salakhutdinov, R. Unsupervised learning of video representations using LSTMs. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 843–852. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Mathieu, M.; Couprie, C.; LeCun, Y. Deep multi-scale video prediction beyond mean square error. In Proceedings of the 4th International Conference on Learning Representations, San Juan, PR, USA, 2–4 May 2016. [Google Scholar]
- Xue, T.; Wu, J.; Bouman, K.L.; Freeman, W.T. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 91–99. [Google Scholar]
- Li, Y.; Fang, C.; Yang, J.; Wang, Z.; Lu, X.; Yang, M.H. Flow-grounded spatial-temporal video prediction from still images. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 600–615. [Google Scholar]
- Zhu, D.; Chern, H.; Yao, H.; Nosrati, M.S.; Yadmellat, P.; Zhang, Y. Practical Issues of Action-Conditioned Next Image Prediction. In Proceedings of the IEEE Conference on Intelligent Transportation Systems, Maui, HI, USA, 4–7 November 2018; pp. 3150–3155. [Google Scholar]
- Yilmaz, M.A.; Murat Tekalp, A. Effect of Architectures and Training Methods on the Performance of Learned Video Frame Prediction. In Proceedings of the International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 4210–4214. [Google Scholar]
- Kwon, Y.H.; Park, M.G. Predicting future frames using retrospective cycle gan. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 1811–1820. [Google Scholar]
- Lu, Y.; Kumar, K.M.; Nabavi, S.S.; Wang, Y. Future frame prediction using convolutional VRNN for anomaly detection. In Proceedings of the 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, Taipei, Taiwan, 18–21 September 2019; pp. 1–8. [Google Scholar]
- Fan, H.; Zhu, L.; Yang, Y. Cubic LSTMs for Video Prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January 27–1 February 2019; Volume 33, pp. 8263–8270. [Google Scholar]
- Pazoki, R.; Razzaghi, P. Next Frame Prediction Using Flow Fields. In Data Science: From Research to Application; Bohlouli, M., Sadeghi Bigham, B., Narimani, Z., Vasighi, M., Ansari, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 45. [Google Scholar]
- Kalchbrenner, N.; Van Den Oord, A.; Simonyan, K.; Danihelka, I.; Vinyals, O.; Graves, A.; Kavukcuoglu, K. Video pixel networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1771–1779. [Google Scholar]
- Byeon, W.; Wang, Q.; Srivastava, R.K.; Koumoutsakos, P. ContextVP: Fully Context-Aware Video Prediction. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Liang, X.; Lee, L.; Dai, W.; Xing, E.P. Dual Motion GAN for Future-Flow Embedded Video Prediction. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1762–1770. [Google Scholar]
- Villegas, R.; Yang, J.; Hong, S.; Lin, X.; Lee, H. Decomposing motion and content for natural video sequence prediction. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Villegas, R.; Yang, J.; Zou, Y.; Sohn, S.; Lin, X.; Lee, H. Learning to generate long-term future via hierarchical prediction. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 5429–5449. [Google Scholar]
- Mahjourian, R.; Wicke, M.; Angelova, A. Geometry-based next frame prediction from monocular video. In Proceedings of the IEEE Intelligent Vehicles Symposium, Los Angeles, CA, USA, 11–14 June 2017; pp. 1700–1707. [Google Scholar]
- Lotter, W.; Kreiman, G.; Cox, D. Deep predictive coding networks for video prediction and unsupervised learning. arXiv 2016, arXiv:1605.08104. [Google Scholar]
- Liu, W.; Luo, W.; Lian, D.; Gao, S. Future Frame Prediction for Anomaly Detection—A New Baseline. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6536–6545. [Google Scholar]
- Elsayed, N.; Maida, A.S.; Bayoumi, M. Reduced-Gate Convolutional LSTM Architecture for Next-Frame Video Prediction Using Predictive Coding. arXiv 2019, arXiv:1810.07251. [Google Scholar]
- Xu, W.; Neumann, I. Finite element analysis based on a parametric model by approximating point clouds. Remote Sens. 2020, 12, 518. [Google Scholar] [CrossRef] [Green Version]
- LeNail, A. NN-SVG: Publication-Ready Neural Network Architecture Schematics. J. Open Source Softw. 2019, 4, 747. [Google Scholar] [CrossRef]
- Masiero, A.; Fissore, F.; Guarnieri, A.; Pirotti, F.; Visintini, D.; Vettore, A. Performance evaluation of two indoor mapping systems: Low-Cost UWB-aided photogrammetry and backpack laser scanning. Appl. Sci. 2018, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Liu, X.; Chen, P.; Liu, S.; Luan, K.; Li, L.; Liu, S.; Liu, X.; Xie, H.; Jin, Y.; et al. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sens. 2015, 7, 6635–6662. [Google Scholar] [CrossRef] [Green Version]
- Gawronek, P.; Makuch, M.; Mitka, B.; Gargula, T. Measurements of the vertical displacements of a railway bridge using TLS technology in the context of the upgrade of the polish railway transport. Sensors 2019, 19, 4275. [Google Scholar] [CrossRef] [Green Version]
- Ziolkowski, P.; Szulwic, J.; Miskiewicz, M. Deformation analysis of a composite bridge during proof loading using point cloud processing. Sensors 2018, 18, 4332. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Ablanedo, E.; Rodríguez-Pérez, J.R.; Armesto, J.; Taboada, M.F.Á. Geometric stability and lens decentering in compact digital cameras. Sensors 2010, 10, 1553–1572. [Google Scholar] [CrossRef] [Green Version]
- Shortis, M.R.; Bellman, C.J.; Robson, S.; Johnston, G.J.; Johnson, G.W. Stability of Zoom and Fixed Lenses used with Digital SLR Cameras. Int. Arch. Photogramm. Remote Sensing, Spat. Inf. Sci. 2006, 36, 285–290. [Google Scholar]
- Graves, A. Generating Sequences With Recurrent Neural Networks. arXiv 2013, arXiv:1308.0850. [Google Scholar]
- Gers, F.A.; Schmidhuber, J. Recurrent nets that time and count. In Proceedings of the International Joint Conference on Neural Networks, Como, Italy, 24–27 July 2000; pp. 189–194. [Google Scholar]
- Lambers, K.; Eisenbeiss, H.; Sauerbier, M.; Kupferschmidt, D.; Gaisecker, T.; Sotoodeh, S.; Hanusch, T. Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. J. Archaeol. Sci. 2007, 34, 1702–1712. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Kargoll, B.; Omidalizarandi, M.; Xu, X.; Alkhatib, H. Model selection for parametric surfaces approximating 3d point clouds for deformation analysis. Remote Sens. 2018, 10, 634. [Google Scholar] [CrossRef] [Green Version]
- Palubinskas, G. Image similarity/distance measures: What is really behind MSE and SSIM? Int. J. Image Data Fusion 2017, 8, 32–53. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [PubMed] [Green Version]
- Sara, U.; Akter, M.; Uddin, M.S. Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 879–888. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Bao, X.; Chen, G.; Neumann, I. Intelligent Calibration of Static FEA Computations Based on Terrestrial Laser Scanning Reference. Sensors 2020, 20, 6439. https://doi.org/10.3390/s20226439
Xu W, Bao X, Chen G, Neumann I. Intelligent Calibration of Static FEA Computations Based on Terrestrial Laser Scanning Reference. Sensors. 2020; 20(22):6439. https://doi.org/10.3390/s20226439
Chicago/Turabian StyleXu, Wei, Xiangyu Bao, Genglin Chen, and Ingo Neumann. 2020. "Intelligent Calibration of Static FEA Computations Based on Terrestrial Laser Scanning Reference" Sensors 20, no. 22: 6439. https://doi.org/10.3390/s20226439
APA StyleXu, W., Bao, X., Chen, G., & Neumann, I. (2020). Intelligent Calibration of Static FEA Computations Based on Terrestrial Laser Scanning Reference. Sensors, 20(22), 6439. https://doi.org/10.3390/s20226439