Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.1.1. Reanalysis Products
2.1.2. Radiosonde Data
2.1.3. GNSS Observations
2.2. Methods
Deriving the ZTD and ZWD from MERRA-2 Meteorological Data at GNSS Stations and Radiosonde Stations
3. Results and Discussion
3.1. Accuracy Comparison of the MERRA-2 ZTD and IGS ZTD
3.2. Accuracy Comparison of the MERRA-2 ZWD/ZTD and Radiosonde Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hofmeister, A.; Böhm, J. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis. J. Geod. 2017, 91, 945–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobiger, T.; Ichikawa, R.; Koyama, Y.; Kondo, T. Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J. Geophys. Res. Atmos 2008, 113, D20. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Shimada, M.; Furuya, M. InSAR observation and numerical modeling of the water vapor signal during a heavy rain: A case study of the 2008 Seino event, central Japan. Geophys. Res. Lett. 2013, 40, 4740–4744. [Google Scholar] [CrossRef]
- Mendes, V.B.; Prates, G.; Pavlis, E.C.; Pavlis, D.E.; Langley, R.B. Improved mapping functions for atmospheric refraction correction in SLR. Geophys. Res. Lett. 2002, 29, 53. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Li, X.; Zus, F.; Heinkelmann, R.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H. Improving BeiDou real-time precise point positioning with numerical weather models. J. Geod. 2017, 91, 1019–1029. [Google Scholar] [CrossRef]
- Santerre, R. Impact of GPS satellite sky distribution. Manuscr. Geod. 1991, 16, 28–53. [Google Scholar]
- Yao, Y.; Xu, X.; Xu, C.; Peng, W.; Wan, Y. GGOS tropospheric delay forecast product performance evaluation and its application in real-time PPP. J. Atmos. Sol. Terr. Phys. 2018, 175, 1–17. [Google Scholar] [CrossRef]
- Tregoning, P.; Herring, T.A. Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys. Res. Lett. 2006, 33, L23303. [Google Scholar] [CrossRef] [Green Version]
- Pany, T.; Pesec, P.; Stangl, G. Elimination of tropospheric path delays in GPS observations with the ECMWF numerical weather model. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 487–492. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Wang, S.H. Evaluation of the NCEP-NCAR and ECMWF15-and 40-yr reanalyzes using radiosonde data from two independent Arctic field experiments. Am. Meteorol. Soc. 2005, 133, 3562–3578. [Google Scholar]
- Krueger, E.; Schüler, T.; Hein, G.W.; Martellucci, A.; Blarzino, G. Galileo tropospheric correction approaches developed within GSTB-V1. In Proceedings of the ENC-GNSS 2004, Rotterdam, The Netherlands, 16–19 May 2004. [Google Scholar]
- Ibrahim, H.E.; El-RRabbany, A. Regional stochastic models for NOAA-based residual tropospheric delays. J. Navig. 2008, 61, 209–219. [Google Scholar] [CrossRef]
- Böhm, J.; Niell, A.; Tregoning, P. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef] [Green Version]
- Böhm, J.; Heinkelmann, R.; Schuh, H. Short Note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Böhm, J.; Moeller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [Green Version]
- Schüler, T. The TropGrid2 standard tropospheric correction model. GPS Solut. 2014, 18, 123–131. [Google Scholar] [CrossRef]
- Song, S.; Zhu, W.; Chen, Q.; Zhao, J.; Qu, W. Preliminary establishment of the tropospheric delay correction model (SHAO) over China. In Proceedings of the First China Satellite Navigation Annual Conference, Portland, OR, USA, 20–21 September 2010. [Google Scholar]
- Li, W.; Yuan, Y.B.; Ou, J.K.; Li, H.; Li, Z. A new global zenith tropospheric delay model IGGtrop for GNSS applications. Chin. Sci. Bull. 2012, 57, 2132–2139. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yuan, Y.B.; Ou, J.K. IGGtrop_SH and IGGtrop_rH: Two improved empirical tropospheric delay models based on vertical reduction functions. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–13. [Google Scholar] [CrossRef]
- Zhao, J.; Song, S.; Chen, Q.; Zhou, W.; Zhu, W. Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile. Chin. J. Geophys. 2014, 57, 3140–3153. (In Chinese) [Google Scholar]
- Yao, Y.; He, C.; Zhang, B.; Xu, C. A new global zenith tropospheric delay model GZTD. Chin. J. Geophys. 2013, 56, 2218–2227. (In Chinese) [Google Scholar]
- Yao, Y.; Hu, Y.; Yu, C. An improved Global Zenith Tropospheric Delay Model. Acta Geod. Cartogr. Sin. 2015, 44, 242–249. [Google Scholar]
- Yao, Y.; Hu, Y.; Zhang, B. Establishment of a global zenith tropospheric delay model using multi-source data. Chin. Sci. Bull. 2016, 61, 2730–2741. [Google Scholar]
- Sun, Z.; Zhang, B.; Yao, Y. A global model for estimating tropospheric delay and weighted mean temperature developed with atmospheric reanalysis data from 1979 to 2017. Remote Sens. 2019, 11, 1893. [Google Scholar] [CrossRef] [Green Version]
- Wilgan, K.; Hadas, T.; Hordyniec, P.; Bosy, J. Real-time precise point positioning augmented with high-resolution numerical weather prediction model. GPS Solut. 2017, 21, 1341–1353. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Lou, Y.; Gu, S. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. J. Geod. 2018, 92, 545–560. [Google Scholar] [CrossRef]
- Chen, Q.; Song, S.; Heise, S.; Heise, S.; Liou, Y.; Zhu, W.; Zhao, J. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China. GPS Solut. 2011, 15, 415–425. [Google Scholar] [CrossRef]
- Chen, Q.; Song, S.; Zhu, Y. An analysis of the accuracy of zenith tropospheric delay calculated from ECMWF/NCEP data over Asian area. Chin. J. Geophys. 2012, 55, 1541–1548. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.; Xu, T.; Nie, W.; Jiang, C.; Yang, Y.; Fang, Z.; Li, M.; Zhang, Z. Evaluation of precipitable water vapor from five reanalysis products with Ground-Based GNSS observations. Remote Sens. 2020, 12, 1817. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, T.; Wang, S.; Nie, S.; Sun, Z. Evaluation of zenith tropospheric delay derived from ERA5 data over China using GNSS observations. Remote Sens. 2020, 12, 663. [Google Scholar] [CrossRef] [Green Version]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model. Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; Mccarty, W.; Suárez, M.; Todling, R.; Zhao, B. The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Hackman, C.; Byram, S.M. IGS Troposphere Working Group 2013. Available online: https://boris.unibe.ch/80305/8/2013_techreport.pdf#page=193 (accessed on 14 October 2020).
- Byun, S.H.; Bar-Sever, Y.E. A new type of troposphere zenith path delay product of the international GNSS service. J. Geod. 2009, 83, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Thayer, G. An improved equation for the radio refractive index of air. Radio Sci. 1974, 9, 803–807. [Google Scholar] [CrossRef]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.E.E.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.; Rocken, C.; Anthes, R.; Ware, R. GPS Meteorology’ Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Saastamioinen, J. Contributions to the theory atmospheric refraction, Part II Refraction corrections in satellite Geodesy. Bull. Geo 1972, 105, 279–298. [Google Scholar] [CrossRef]
- Sheng, F.; Mao, J.; Li, J.; Zhang, A.; Sang, J.; Pan, N. Atmospheric Physics; Peking University Press: Beijing, China, 2013. [Google Scholar]
- Zhang, C.; Guo, C.; Chen, J.; Zhang, L.; Wang, B. EGM 2008 and its application analysis in Chinese mainland. Acta Geodaehca Et Ca Riog Raphica Slnlea 2009, 38, 283–289. [Google Scholar]
- Wang, J.; Zhang, L.; Dai, A. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res. 2005, 110, D21101. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J. Geophys. Res. Atmos 2016, 121, 833–852. [Google Scholar] [CrossRef]
- Jiang, P.; Ye, S.; Chen, D.; Liu, Y.; Xia, P.; Müller, R.; Thenkabail, P. Retrieving precipitable water vapor data using GPS zenith delays and global reanalysis data in China. Remote Sens. 2016, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Janssen, V.; Ge, L.; Rizos, C. Tropospheric corrections to SAR interferometry from GPS observations. GPS Solut. 2004, 8, 140–151. [Google Scholar] [CrossRef] [Green Version]
Year | Bias/cm | RMS/cm | ||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
2015 | −1.49 | 1.96 | 0.41 | 0.44 | 2.6 | 1.28 |
2016 | −1.28 | 2.47 | 0.43 | 0.39 | 2.9 | 1.35 |
2017 | −1.28 | 2.28 | 0.5 | 0.42 | 2.67 | 1.34 |
Station Name | Bias/cm | RMS/cm |
---|---|---|
KELY | 0.99 [−1.82, 3.88] | 1.31 [0.11, 4.66] |
GOL2 | 0.69 [−1.32, 3.50] | 1.17 [0.18, 4.04] |
BJCO | 0.35 [−3.78, 4.56] | 1.80 [0.23, 5.55] |
SYOG | 0.15 [−0.73, 1.03] | 0.44 [0.08, 1.70] |
DUND | 0.44 [−1.93, 2.98] | 1.21 [0.21, 3.82] |
MAL2 | −0.38 [−5.07, 4.35] | 1.80 [0.14, 5.46] |
Bias/cm | RMS/cm | |||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
ZWD | −2.41 | 3.64 | 0.47 | 0.04 | 4.5 | 1.36 |
ZTD | −2.66 | 4.59 | 0.46 | 0.37 | 4.7 | 1.44 |
ZWD | ZTD | |||
---|---|---|---|---|
Station Name | Bias/cm | RMS/cm | Bias/cm | RMS/cm |
4018 | 0.24 [−2.14, 3.06] | 0.65 [0, 3.37] | 0.24 [−2.12, 2.92] | 0.65 [0.01, 3.20] |
54857 | 0.44 [−3.51, 4.46] | 1.40 [0.01, 6.57] | 0.32 [−3.65, 4.28] | 1.38 [0.03, 6.44] |
91334 | 1.80 [−4.13, 6.30] | 2.57 [0.13, 7.34] | 1.27 [−7.69, 6.07] | 2.28 [0.14, 8.06] |
89512 | −0.40 [−1.83, 0.90] | 0.48 [0, 1.83] | 0.21 [−1.66, 2.04] | 0.54 [0, 2.04] |
94866 | 0.48 [−1.29, 2.76] | 0.93 [0.02, 2.89] | 0.20 [−1.57, 2.41] | 0.84 [0.04, 2.71] |
82824 | 0.57 [−3.27, 6.31] | 1.64 [0, 6.31] | −0.32 [−4.11, 5.60] | 1.65 [0.01, 5.80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Guo, L.; Liu, L.; Chen, H.; Chen, J.; Xie, S. Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data. Sensors 2020, 20, 6440. https://doi.org/10.3390/s20226440
Huang L, Guo L, Liu L, Chen H, Chen J, Xie S. Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data. Sensors. 2020; 20(22):6440. https://doi.org/10.3390/s20226440
Chicago/Turabian StyleHuang, Liangke, Lijie Guo, Lilong Liu, Hua Chen, Jun Chen, and Shaofeng Xie. 2020. "Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data" Sensors 20, no. 22: 6440. https://doi.org/10.3390/s20226440
APA StyleHuang, L., Guo, L., Liu, L., Chen, H., Chen, J., & Xie, S. (2020). Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data. Sensors, 20(22), 6440. https://doi.org/10.3390/s20226440