Design and Analysis of a Novel Piezoceramic Stack-based Smart Aggregate
Abstract
:1. Introduction
2. Structure and Fabrication Procedure of PiSSAs
2.1. Structure of PiSSAs
2.2. Fabrication Procedure of PiSSAs
3. Fundamentals of PiSSAs
3.1. Simplified Model of PiSSAs
3.2. Boundary Conditions of PiSSA Actuators
3.3. Boundary Conditions for PiSSA Sensors
3.4. Analytical Solutions to PiSSAs
4. Performance Comparison of PiSSAs
4.1. Parameters of PiSSAs
4.2. Electromechanical Performance
4.3. Transmitting Performance
4.4. Sensing Performance
4.5. Experimental Validation
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, I.-H.; Jeon, H.; Baek, S.-C.; Hong, W.H.; Jung, H.-J. Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle. Sensors 2018, 18, 1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Xiao, L.; Zhang, J.; Cai, C.S.; Wang, L. Flexural behavior of corroded hps beams. Eng. Struct. 2019, 195, 274–287. [Google Scholar] [CrossRef]
- Huo, L.; Li, C.; Jiang, T.; Li, H.-N. Feasibility study of steel bar corrosion monitoring using a piezoceramic transducer enabled time reversal method. Appl. Sci. 2018, 8, 2304. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Hu, S.; Zhang, J.; Cai, C.S.; Li, L.-y. Influence of cracks on chloride diffusivity in concrete: A five-phase mesoscale model approach. Constr. Build. Mater. 2019, 197, 587–596. [Google Scholar] [CrossRef]
- Xu, K.; Deng, Q.; Cai, L.; Ho, S.; Song, G. Damage detection of a concrete column subject to blast loads using embedded piezoceramic transducers. Sensors 2018, 18, 1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giagopoulos, D.; Arailopoulos, A.; Dertimanis, V.; Papadimitriou, C.; Chatzi, E.; Grompanopoulos, K. Structural health monitoring and fatigue damage estimation using vibration measurements and finite element model updating. Struct. Health Monit. 2018, 18, 1189–1206. [Google Scholar] [CrossRef]
- Li, N.; Wang, F.; Song, G. New entropy-based vibro-acoustic modulation method for metal fatigue crack detection: An exploratory study. Measurement 2019, 150, 107075. [Google Scholar] [CrossRef]
- Noori Hoshyar, A.; Samali, B.; Liyanapathirana, R.; Taghavipour, S. Analysis of failure in concrete and reinforced-concrete beams for the smart aggregate–based monitoring system. Struct. Health Monit. 2020, 19, 463–480. [Google Scholar] [CrossRef]
- Liu, T.; Zou, D.; Du, C.; Wang, Y. Influence of axial loads on the health monitoring of concrete structures using embedded piezoelectric transducers. Struct. Health Monit. 2017, 16, 202–214. [Google Scholar] [CrossRef]
- Lu, G.; Li, Y.; Song, G. A delay-and-boolean-add imaging algorithm for damage detection with a small number of piezoceramic transducers. Smart Mater. Struct. 2016, 25, 095030. [Google Scholar] [CrossRef]
- Mishra, M.; Barman, S.K.; Maity, D.; Maiti, D.K. Ant lion optimisation algorithm for structural damage detection using vibration data. J. Civ. Struct. Health Monit. 2019, 9, 117–136. [Google Scholar] [CrossRef]
- Song, G.; Wang, C.; Wang, B. Structural health monitoring (shm) of civil structures. Appl. Sci. 2017, 7, 789. [Google Scholar] [CrossRef]
- Lei, B.; Ren, Y.; Wang, N.; Huo, L.; Song, G. Design of a new low-cost unmanned aerial vehicle and vision-based concrete crack inspection method. Struct. Health Monit. 2020, 19, 1871–1883. [Google Scholar] [CrossRef]
- Pitchai, P.; Saravanan, U.; Goswami, R. Mechanics-based algorithms to determine the current state of a bridge using quasi-static loading and strain measurement. Struct. Health Monit. 2019, 18, 1874–1888. [Google Scholar] [CrossRef]
- Hu, W.-H.; Said, S.; Rohrmann, R.G.; Cunha, Á.; Teng, J. Continuous dynamic monitoring of a prestressed concrete bridge based on strain, inclination and crack measurements over a 14-year span. Struct. Health Monit. 2018, 17, 1073–1094. [Google Scholar] [CrossRef]
- Feng, Q.; Kong, Q.; Jiang, J.; Liang, Y.; Song, G. Detection of interfacial debonding in a rubber–steel-layered structure using active sensing enabled by embedded piezoceramic transducers. Sensors 2017, 17, 2001. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Yang, X.; Li, S. Monitoring of interfacial debonding of concrete filled pultrusion-gfrp tubular column based on piezoelectric smart aggregate and wavelet analysis. Sensors 2020, 20, 2149. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Li, X.; Fang, B.; Wen, Z. Crack detection in hydraulic concrete structures using bending loss data of optical fiber. J. Intell. Mater. Syst. Struct. 2017, 28, 1719–1733. [Google Scholar] [CrossRef]
- Wang, H.-P.; Ni, Y.-Q.; Dai, J.-G.; Yuan, M.-D. Interfacial debonding detection of strengthened steel structures by using smart cfrp-fbg composites. Smart Mater. Struct. 2019, 28, 115001. [Google Scholar] [CrossRef]
- He, S.; Wang, N.; Ho, M.; Zhu, J.; Song, G. Design of a new stress wave communication method for underwater communication. IEEE Trans. Ind. Electron. 2020, 1. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, F.; Huo, L.; Song, G. Detection of sand deposition in pipeline using percussion, voice recognition, and support vector machine. Struct. Health Monit. 2020, 19, 2075–2090. [Google Scholar] [CrossRef]
- Wang, F.; Song, G. Monitoring of multi-bolt connection looseness using a novel vibro-acoustic method. Nonlinear Dyn. 2020, 136, 106507. [Google Scholar] [CrossRef]
- Ginzburg, D.; Ciampa, F.; Scarselli, G.; Meo, M. Shm of single lap adhesive joints using subharmonic frequencies. Smart Mater. Struct. 2017, 26, 105018. [Google Scholar] [CrossRef] [Green Version]
- Salehzadeh Nobari, A.E.; Aliabadi, M.H.F. A multilevel isolation forrest and convolutional neural network algorithm for impact characterization on composite structures. Sensors 2020, 20, 5896. [Google Scholar] [CrossRef] [PubMed]
- De Simone, M.E.; Ciampa, F.; Boccardi, S.; Meo, M. Impact source localisation in aerospace composite structures. Smart Mater. Struct. 2017, 26, 125026. [Google Scholar] [CrossRef] [Green Version]
- Fierro, G.P.M.; Ciampa, F.; Ginzburg, D.; Onder, E.; Meo, M. Nonlinear ultrasound modelling and validation of fatigue damage. J. Sound Vib. 2015, 343, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.-H.; Kim, D.-J.; Byun, Y.-H. Expansion-induced crack propagation in rocks monitored by using piezoelectric transducers. Sensors 2020, 20, 6054. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Quan, L. Identification of a moving mass on a beam bridge using piezoelectric sensor arrays. J. Sound Vib. 2020, 115754, in press. [Google Scholar] [CrossRef]
- Guo, S.; Chen, S.; Zhang, L.; Liew, W.H.; Yao, K. Direct-write piezoelectric ultrasonic transducers for pipe structural health monitoring. NDT E Int. 2019, 107, 102131. [Google Scholar] [CrossRef]
- Song, Z.; Qi, X.; Liu, Z.; Ma, H. Experimental study of guided wave propagation and damage detection in large diameter pipe filled by different fluids. NDT E Int. 2018, 93, 78–85. [Google Scholar] [CrossRef]
- Lu, G.; Li, Y.; Wang, T.; Xiao, H.; Huo, L.; Song, G. A multi-delay-and-sum imaging algorithm for damage detection using piezoceramic transducers. J. Intell. Mater. Syst. Struct. 2017, 28, 1150–1159. [Google Scholar] [CrossRef]
- Wang, F.; Song, G. Bolt early looseness monitoring using modified vibro-acoustic modulation by time-reversal. Mech. Syst. Signal Process. 2019, 130, 349–360. [Google Scholar] [CrossRef]
- Lu, G.; Li, Y.; Zhou, M.; Feng, Q.; Song, G. Detecting damage size and shape in a plate structure using pzt transducer array. J. Aerosp. Eng. 2018, 31, 04018075. [Google Scholar] [CrossRef]
- Xu, C.; Du, S.; Gong, P.; Li, Z.; Chen, G.; Song, G. An improved method for pipeline leakage localization with a single sensor based on modal acoustic emission and empirical mode decomposition with hilbert transform. IEEE Sens. J. 2020, 20, 5480–5491. [Google Scholar] [CrossRef]
- Chen, D.; Huo, L.; Song, G. Emi based multi-bolt looseness detection using series/parallel multi-sensing technique. Smart Struct. Syst. 2020, 25, 423–432. [Google Scholar]
- Guo, B.; Chen, D.; Huo, L.; Song, G. Monitoring of grouting compactness in tendon duct using multi-sensing electro-mechanical impedance method. Appl. Sci. 2020, 10, 2018. [Google Scholar] [CrossRef] [Green Version]
- Zuo, C.; Feng, X.; Zhou, J. A three-dimensional model of the effective electromechanical impedance for an embedded pzt transducer. Math. Probl. Eng. 2013, 2013, 708–715. [Google Scholar] [CrossRef]
- Song, G.; Mo, Y.L.; Otero, K.; Gu, H. Health monitoring and rehabilitation of a concrete structure using intelligent materials. Smart Mater. Struct. 2006, 15, 309. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Wang, R.; Song, G.; Yang, Z.J.; Still, B. Monitoring the soil freeze-thaw process using piezoceramic-based smart aggregate. J. Cold Reg. Eng. 2014, 28, 06014001. [Google Scholar] [CrossRef]
- Li, W.; Kong, Q.; Ho, S.C.M.; Mo, Y.; Song, G. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures. Smart Mater. Struct. 2016, 25, 115031. [Google Scholar] [CrossRef]
- Zou, D.; Liu, T.; Yang, A.; Zhao, Y.; Du, C. A primary study on the performance of piezoceramic based smart aggregate under various compressive stresses. Smart Mater. Struct. 2017, 26, 107003. [Google Scholar] [CrossRef] [Green Version]
- Siu, S.; Ji, Q.; Wu, W.; Song, G.; Ding, Z. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel. Smart Mater. Struct. 2014, 23, 125030. [Google Scholar] [CrossRef]
- Voutetaki, M.E.; Papadopoulos, N.A.; Angeli, G.M.; Providakis, C.P. Investigation of a new experimental method for damage assessment of rc beams failing in shear using piezoelectric transducers. Eng. Struct. 2016, 114, 226–240. [Google Scholar] [CrossRef]
- Kong, Q.; Robert, R.; Silva, P.; Mo, Y. Cyclic crack monitoring of a reinforced concrete column under simulated pseudo-dynamic loading using piezoceramic-based smart aggregates. Appl. Sci. 2016, 6, 341. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Zhang, H.; Ou, J. A pzt-based smart aggregate for compressive seismic stress monitoring. Smart Mater. Struct. 2012, 21, 105035. [Google Scholar] [CrossRef]
- Zou, D.; Liu, T.; Qiao, G.; Huang, Y.; Li, B. An experimental study on the performance of piezoceramic-based smart aggregate in water environment. IEEE Sens. J. 2014, 14, 943–944. [Google Scholar] [CrossRef]
- Kong, Q.; Feng, Q.; Song, G. Water presence detection in a concrete crack using smart aggregates. Int. J. Smart Nano Mater. 2015, 6, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Talakokula, V.; Bhalla, S.; Gupta, A. Monitoring early hydration of reinforced concrete structures using structural parameters identified by piezo sensors via electromechanical impedance technique. Mech. Syst. Signal. Pr. 2018, 99, 129–141. [Google Scholar] [CrossRef]
- Zhu, J.; Ho, S.C.M.; Kong, Q.; Patil, D.; Mo, Y.-L.; Song, G. Estimation of impact location on concrete column. Smart Mater. Struct. 2017, 26, 055037. [Google Scholar] [CrossRef]
- Song, G.; Olmi, C.; Gu, H. An overheight vehicle–bridge collision monitoring system using piezoelectric transducers. Smart Mater. Struct. 2007, 16, 462. [Google Scholar] [CrossRef]
- Zeng, L.; Parvasi, S.M.; Kong, Q.; Huo, L.; Li, M.; Song, G. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach. Smart Mater. Struct. 2015, 24, 125026. [Google Scholar] [CrossRef]
- Jiang, T.; Kong, Q.; Patil, D.; Luo, Z.; Huo, L.; Song, G. Detection of debonding between fiber reinforced polymer bar and concrete structure using piezoceramic transducers and wavelet packet analysis. IEEE Sens. J. 2017, 17, 1992–1998. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Z. Detecting of the crack and leakage in the joint of precast concrete segmental bridge using piezoceramic based smart aggregate. Sensors 2020, 20, 5398. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Xu, D.; Huang, S.; Cheng, X. Assessment of corrosion of reinforcing steel bars in concrete using embedded piezoelectric transducers based on ultrasonic wave. Constr. Build. Mater. 2017, 151, 925–930. [Google Scholar] [CrossRef]
- Feng, Q.; Kong, Q.; Huo, L.; Song, G. Crack detection and leakage monitoring on reinforced concrete pipe. Smart Mater. Struct. 2015, 24, 115020. [Google Scholar] [CrossRef]
- Gu, H.; Moslehy, Y.; Sanders, D.; Song, G.; Mo, Y. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations. Smart Mater. Struct. 2010, 19, 065026. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Xiao, J.; Jiang, J. A pzt-based electromechanical impedance method for monitoring the soil freeze–thaw process. Sensors 2019, 19, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taghavipour, S.; Kharkovsky, S.; Kang, W.-H.; Samali, B.; Mirza, O. Detection and monitoring of flexural cracks in reinforced concrete beams using mounted smart aggregate transducers. Smart Mater. Struct. 2017, 26, 104009. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, L.; Cao, M. Damage quantification with embedded piezoelectric aggregates based on wavelet packet energy analysis. Sensors 2019, 19, 425. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Kong, Q.; Song, G. Damage detection of concrete piles subject to typical damage types based on stress wave measurement using embedded smart aggregates transducers. Measurement 2016, 88, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Gu, H.; Mo, Y.-L. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008, 17, 033001. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.; Hsu, T.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, M.; Yin, X.; Huang, Z.; Wang, L. Debonding detection of reinforced concrete (rc) beam with near-surface mounted (nsm) pre-stressed carbon fiber reinforced polymer (cfrp) plates using embedded piezoceramic smart aggregates (sas). Appl. Sci. 2020, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zheng, Y.; Song, G.; Chen, D.; Ye, Y. Identification of the structural damage mechanism of bfrp bars reinforced concrete beams using smart transducers based on time reversal method. Constr. Build. Mater. 2019, 220, 615–627. [Google Scholar] [CrossRef]
- Wang, J.; Kong, Q.; Shi, Z.; Song, G. Electromechanical properties of smart aggregate: Theoretical modeling and experimental validation. Smart Mater. Struct. 2016, 25, 095008. [Google Scholar] [CrossRef]
- Huo, L.; Li, X.; Li, H.; Wang, Z.; Song, G. Dynamic modelling of embeddable piezoceramic transducers. Sensors 2017, 17, 2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Li, H.; Ho, S.C.M. A novel embeddable tubular piezoceramics-based smart aggregate for damage detection in two-dimensional concrete structures. Sensors 2019, 19, 1501. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Huo, L.; Li, H.; Song, G. Smart concrete slabs with embedded tubular pzt transducers for damage detection. Smart Mater. Struct. 2018, 27, 025002. [Google Scholar] [CrossRef]
- Gao, W.; Huo, L.; Li, H.; Song, G. An embedded tubular pzt transducer based damage imaging method for two-dimensional concrete structures. IEEE Access 2018, 6, 30100–30109. [Google Scholar] [CrossRef]
- Kong, Q.; Fan, S.; Bai, X.; Mo, Y.; Song, G. A novel embeddable spherical smart aggregate for structural health monitoring: Part i. Fabrication and electrical characterization. Smart Mater. Struct. 2017, 26, 095050. [Google Scholar] [CrossRef]
- Kong, Q.; Fan, S.; Mo, Y.; Song, G. A novel embeddable spherical smart aggregate for structural health monitoring: Part ii. Numerical and experimental verifications. Smart Mater. Struct. 2017, 26, 095051. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, X.; Jiang, Q.; Li, Y. A cement-based 1–3 piezoelectric composite sensor working in d15 mode for the characterization of shear stress in civil engineering structures. Smart Mater. Struct. 2018, 27, 115013. [Google Scholar] [CrossRef]
- Yan, S.; Ma, H.; Li, P.; Song, G.; Wu, J. Development and application of a structural health monitoring system based on wireless smart aggregates. Sensors 2017, 17, 1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Fu, Z.; Zhang, X.; Wang, Y.; Hu, J. Radially sandwiched cylindrical piezoelectric transducer. Smart Mater. Struct. 2012, 22, 015005. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Z.; Han, Z. Analytical solution of piezoelectric composite stack transducers. J. Intell. Mater. Syst. Struct. 2013, 24, 1626–1636. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Z. Electromechanical analysis of 2–2 cement-based piezoelectric transducers in series electrically. Smart Struct. and Syst. 2014, 14, 267–284. [Google Scholar] [CrossRef]
- Lin, S. The radial composite piezoelectric ceramic transducer. Sens. Actuators, A 2008, 141, 136–143. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Y.; Liu, J.; Wang, L. A four-foot walking-type stepping piezoelectric actuator: Driving principle, simulation and experimental evaluation. Smart Mater. Struct. 2018, 27, 115002. [Google Scholar] [CrossRef]
- Csencsics, E.; Sitz, B.; Schitter, G. Integration of control design and system operation of a high performance piezo-actuated fast steering mirror. IEEE-ASME Trans. Mechatron. 2020, 25, 239–247. [Google Scholar] [CrossRef]
- Lu, G.; Feng, Q.; Li, Y.; Wang, H.; Song, G. Characterization of ultrasound energy diffusion due to small-size damage on an aluminum plate using piezoceramic transducers. Sensors 2017, 17, 2796. [Google Scholar] [CrossRef] [Green Version]
- Mason, W.; Baerwald, H. Piezoelectric crystals and their applications to ultrasonics. Phys. Today 1951, 4, 23. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, X.; Han, Q.; Qin, Z.; Chu, F. Energy harvesting of beam vibration based on piezoelectric stacks. Smart Mater. Struct. 2019, 28, 125020. [Google Scholar] [CrossRef]
Dimensions (mm) | Material Type | |
---|---|---|
PZT wafer | dp = 10, hp = 1 | PZT−5 |
Upper and Lower Covers | hc = 1 | Copper |
Cylinder | do = 14, din = 12 | Copper |
Epoxy | / | Pattex PKM12C−1 |
PZT−5 | Copper | Epoxy | |
---|---|---|---|
Density ρ (kg/m3) | 7450 | 8800 | 1650 |
Young’s modulus C33 (GPa) | 90 | 90 | 3.2 |
d33 (pC/N) | 420 | / | / |
2200 | / | / |
Resonance Frequency (kHz) | Anti-resonance Frequency (kHz) | |||||
---|---|---|---|---|---|---|
Measured | Theoretical | Relative Error | Measured | Theoretical | Relative Error | |
Four PZTs in series | 202.8 | 201.29 | 0.74 | 222.6 | 221.7 | 0.40 |
Six PZTs in series | 156.3 | 152.61 | 2.36 | 173.8 | 168.32 | 3.15 |
Four PZTs in parallel | 148.5 | 155.81 | 4.92 | 165.3 | 173.82 | 5.15 |
Six PZTs in parallel | 116.6 | 120.64 | 3.46 | 122.0 | 134.9 | 10.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Zhu, X.; Wang, T.; Hao, Z.; Tan, B. Design and Analysis of a Novel Piezoceramic Stack-based Smart Aggregate. Sensors 2020, 20, 6438. https://doi.org/10.3390/s20226438
Lu G, Zhu X, Wang T, Hao Z, Tan B. Design and Analysis of a Novel Piezoceramic Stack-based Smart Aggregate. Sensors. 2020; 20(22):6438. https://doi.org/10.3390/s20226438
Chicago/Turabian StyleLu, Guangtao, Xin Zhu, Tao Wang, Zhiqiang Hao, and Bohai Tan. 2020. "Design and Analysis of a Novel Piezoceramic Stack-based Smart Aggregate" Sensors 20, no. 22: 6438. https://doi.org/10.3390/s20226438
APA StyleLu, G., Zhu, X., Wang, T., Hao, Z., & Tan, B. (2020). Design and Analysis of a Novel Piezoceramic Stack-based Smart Aggregate. Sensors, 20(22), 6438. https://doi.org/10.3390/s20226438