Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Devices and Architecture
- Wearability: the device should be easily worn by the subject with no need to apply conductive gels, wired electrodes or similar preparations;
- Streaming: the device should stream the data in real-time to an external collector through a Bluetooth connection;
- Availability: the device should be commercially available at the moment of testing (prototypes, proof-of-concepts or custom devices were not considered);
- Performance: the final choice should favor the device with a higher sampling rate and higher number of sensors to select the most advanced technological solution.
2.2.1. Reference: Thought Technology FlexComp
- Electrocardiogram (ECG): using three electrodes placed over the left and right coracoid processes and below the ribs on the left, the signal is pre-amplified and filtered by the EKG sensor (T9306M) which returns a single channel read in millivolts. UniGel electrodes (T3425) are used as conductive means between the sensor and the skin;
- Electrodermal activity (EDA): two finger bands with Ag–AgCl electrodes (SA2659) are placed on the second and fourth finger of the left hand and connected to the sensor (SA9309M). The skin conductance is measured in microSiemens (S);
- Blood volume pulse (BVP): the sensor (SA9308M) is placed on the third finger of the left hand. The relative amount of reflected infrared light is measured;
- Respiration (RESP): a band is worn on the chest to measure the relative volumetric expansion by the elongation of an elastic patch (SA9311M);
- Trigger (TRG): a handle with a button to generate electrical impulses used to manually mark the experimental events.
2.2.2. Empatica E4
- BVP: four light-emitting diodes (LEDs) are used to generate light at two different wavelengths (green and red) and two photodiodes are used to measure reflected light. Using two wavelengths and an appropriate proprietary algorithm to preprocess the signals, the E4 aims at reducing motion effects and sensitivity to external sources of light. Sensors are placed on the bottom of the wristband case in firm contact to the skin, and the signal is sampled at 64 Hz;
- EDA: two stainless steel electrodes are placed on the band to allow positioning on the inner side of the wrist. Skin conductance is measured in microSiemens at a 4 Hz sampling rate;
- Acceleration (ACC): three axes of acceleration (range g) are measured at a 32 Hz sampling frequency;
- Skin Temperature (ST): measured by an infrared thermopile placed on the back of the case, at a 4 Hz sampling frequency.
2.2.3. ComfTech HeartBand
- ECG: using two tissue electrodes placed over the chest and connected to the acquisition unit, the signal is sampled (128 Hz), pre-amplified and filtered to return a single channel read;
- ACC: three axes of acceleration are measured by a sensor embedded on the acquisition unit and sampled at 200 Hz.
2.3. Experimental Protocol and Procedure
2.4. Preprocessing
2.5. Signal Quality Analysis
2.5.1. Cardiac Signals
2.5.2. Adaptive Beat Detection
- i.
- Computation of the local range of the signal;
- ii.
- Peak detection with threshold from the local range.
2.5.3. Adaptive Outlier Detection
2.5.4. Electrodermal Activity Signals
3. Results
3.1. Cardiac Signals
3.2. Electrodermal Activity
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R.R.; Poh, M.Z.; Eydgahi, H. Wearable sensors: Opportunities and challenges for low-cost health care. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 1763–1766. [Google Scholar]
- Vernetti, A.; Shic, F.; Boccanfuso, L.; Macari, S.; Kane-Grade, F.; Milgramm, A.; Hilton, E.; Heymann, P.; Goodwin, M.S.; Chawarska, K. Atypical Emotional Electrodermal Activity in Toddlers with Autism Spectrum Disorder. Autism Res. 2020, 13, 1476–1488. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Estève, D.; Fourniols, J.Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.R. Device-based monitoring in physical activity and public health research. Physiol. Meas. 2012, 33, 1769. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Tee, B.C.K.; Chortos, A.L.; Schwartz, G.; Tse, V.; Lipomi, D.J.; Wong, H.S.P.; McConnell, M.V.; Bao, Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.C.; Mun, J.; Kwon, S.Y.; Park, S.; Bao, Z.; Park, S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Adv. Mater. 2019, 31, 1904765. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.R.; Kim, H.S.; Qazi, R.; Kwon, Y.T.; Jeong, J.W.; Yeo, W.H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924. [Google Scholar] [CrossRef]
- Boutry, C.M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A.C.; Pfattner, R.; Niu, S.; Li, J.; Claverie, J.; et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 2019, 3, 47–57. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Molinnus, D.; Mirza, O.; Guinovart, T.; Windmiller, J.R.; Valdés-Ramírez, G.; Andrade, F.J.; Schöning, M.J.; Wang, J. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 2014, 54, 603–609. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chan, M.C.; Chen, C.Y.; Lin, B.S. Novel wearable and wireless ring-type pulse oximeter with multi-detectors. Sensors 2014, 14, 17586–17599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinh, T.; Nguyen, T.; Phan, H.P.; Nguyen, N.T.; Dao, D.V.; Bell, J. Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosens. Bioelectron. 2020, 166, 112460. [Google Scholar] [CrossRef] [PubMed]
- Tipparaju, V.V.; Xian, X.; Bridgeman, D.; Wang, D.; Tsow, F.; Forzani, E.; Tao, N. Reliable Breathing Tracking With Wearable Mask Device. IEEE Sens. J. 2020, 20, 5510–5518. [Google Scholar] [CrossRef]
- Swan, M. Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 2012, 1, 217–253. [Google Scholar] [CrossRef] [Green Version]
- Levenson, R.W. The autonomic nervous system and emotion. Emot. Rev. 2014, 6, 100–112. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Dürichen, R.; Laerhoven, K.V. Wearable-Based Affect Recognition—A Review. Sensors 2019, 19, 4079. [Google Scholar] [CrossRef] [Green Version]
- Picard, R.W.; Vyzas, E.; Healey, J. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 1175–1191. [Google Scholar] [CrossRef] [Green Version]
- Koumpouros, Y.; Kafazis, T. Wearables and mobile technologies in Autism Spectrum Disorder interventions: A systematic literature review. Res. Autism Spectr. Disord. 2019, 66, 101405. [Google Scholar] [CrossRef]
- Azhari, A.; Lim, M.; Bizzego, A.; Gabrieli, G.; Bornstein, M.H.; Esposito, G. Physical presence of spouse enhances brain-to-brain synchrony in co-parenting couples. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Bizzego, A.; Azhari, A.; Campostrini, N.; Truzzi, A.; Ng, L.Y.; Gabrieli, G.; Bornstein, M.H.; Setoh, P.; Esposito, G. Strangers, Friends, and Lovers Show Different Physiological Synchrony in Different Emotional States. Behav. Sci. 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Petterson, M.T.; Begnoche, V.L.; Graybeal, J.M. The effect of motion on pulse oximetry and its clinical significance. Anesth. Analg. 2007, 105, S78–S84. [Google Scholar] [CrossRef] [PubMed]
- Yadhuraj, S.; Harsha, H. Motion Artifact Reduction in Photoplethysmographic Signals: A Review. Int. J. Innov. Res. Dev. 2013, 2, 626–640. [Google Scholar]
- Warren, K.M.; Harvey, J.R.; Chon, K.H.; Mendelson, Y. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph. Sensors 2016, 16, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleckner, I.R.; Jones, R.M.; Wilder-Smith, O.; Wormwood, J.B.; Akcakaya, M.; Quigley, K.S.; Lord, C.; Goodwin, M.S. Simple, Transparent, and Flexible Automated Quality Assessment Procedures for Ambulatory Electrodermal Activity Data. IEEE Trans. Biomed. Eng. 2017, 65, 1460–1467. [Google Scholar] [CrossRef]
- Thammasan, N.; Stuldreher, I.V.; Schreuders, E.; Giletta, M.; Brouwer, A.M. A Usability Study of Physiological Measurement in School Using Wearable Sensors. Sensors 2020, 20, 5380. [Google Scholar] [CrossRef]
- Kleiman, E.; Millner, A.J.; Joyce, V.W.; Nash, C.C.; Buonopane, R.J.; Nock, M.K. Using wearable physiological monitors with suicidal adolescent inpatients: Feasibility and acceptability study. JMIR mHealth uHealth 2019, 7, e13725. [Google Scholar]
- van Beers, J.J.; Stuldreher, I.V.; Thammasan, N.; Brouwer, A.M. A Comparison between Laboratory and Wearable Sensors in the Context of Physiological Synchrony. In Proceedings of the 2020 International Conference on Multimodal Interaction, Utrecht, The Netherlands, 25–29 October 2020; pp. 604–608. [Google Scholar]
- De Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable sleep technology in clinical and research settings. Med. Sci. Sport. Exerc. 2019, 51, 1538. [Google Scholar] [CrossRef]
- Danzig, R.; Wang, M.; Shah, A.; Trotti, L.M. The wrist is not the brain: Estimation of sleep by clinical and consumer wearable actigraphy devices is impacted by multiple patient-and device-specific factors. J. Sleep Res. 2020, 29, e12926. [Google Scholar] [CrossRef]
- Breteler, M.J.; KleinJan, E.J.; Dohmen, D.A.; Leenen, L.P.; van Hillegersberg, R.; Ruurda, J.P.; van Loon, K.; Blokhuis, T.J.; Kalkman, C.J. Vital signs monitoring with wearable sensors in high-risk surgical patients: A clinical validation study. Anesthesiology 2020, 132, 424–439. [Google Scholar] [CrossRef]
- Baig, M.M.; GholamHosseini, H.; Moqeem, A.A.; Mirza, F.; Lindén, M. A systematic review of wearable patient monitoring systems–current challenges and opportunities for clinical adoption. J. Med. Syst. 2017, 41, 115. [Google Scholar] [CrossRef]
- Appelboom, G.; Yang, A.H.; Christophe, B.R.; Bruce, E.M.; Slomian, J.; Bruyère, O.; Bruce, S.S.; Zacharia, B.E.; Reginster, J.Y.; Connolly, E.S., Jr. The promise of wearable activity sensors to define patient recovery. J. Clin. Neurosci. 2014, 21, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef] [Green Version]
- McKeown, G.; Valstar, M.; Cowie, R.; Pantic, M.; Schroder, M. The SEMAINE database: Annotated multimodal records of emotionally coloured conversations between a person and a limited agent. IEEE Trans. Affect. Comput. 2012, 3, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbarino, M.; Lai, M.; Bender, D.; Picard, R.W.; Tognetti, S. Empatica E3-A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In Proceedings of the 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare, Athens, Greece, 3–5 November 2014; pp. 39–42. [Google Scholar] [CrossRef]
- Bizzego, A.; Battisti, A.; Gabrieli, G.; Esposito, G.; Furlanello, C. pyphysio: A physiological signal processing library for data science approaches in physiology. SoftwareX 2019, 10, 100287. [Google Scholar] [CrossRef]
- Li, Q.; Mark, R.G.; Clifford, G.D. Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol. Meas. 2007, 29, 15. [Google Scholar] [CrossRef] [Green Version]
- Behar, J.; Oster, J.; Li, Q.; Clifford, G.D. ECG signal quality during arrhythmia and its application to false alarm reduction. IEEE Trans. Biomed. Eng. 2013, 60, 1660–1666. [Google Scholar] [CrossRef]
- Elgendi, M. Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering 2016, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Wander, J.; Morris, D. A combined segmenting and non-segmenting approach to signal quality estimation for ambulatory photoplethysmography. Physiol. Meas. 2014, 35, 2543. [Google Scholar] [CrossRef]
- Selvaraj, N.; Mendelson, Y.; Shelley, K.H.; Silverman, D.G.; Chon, K.H. Statistical approach for the detection of motion/noise artifacts in Photoplethysmogram. In Proceedings of the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, Boston, MA, USA, 30 August–3 September 2011; pp. 4972–4975. [Google Scholar]
- Bizzego, A.; Furlanello, C. DBD-RCO: Derivative Based Detection And Reverse Combinatorial Optimization To Improve Heart Beat Detection For Wearable Devices. bioRxiv 2017, 118943. [Google Scholar] [CrossRef] [Green Version]
- Malik, M. Heart rate variability. Ann. Noninvasive Electrocardiol. 1996, 1, 151–181. [Google Scholar] [CrossRef]
- Taylor, S.; Jaques, N.; Chen, W.; Fedor, S.; Sano, A.; Picard, R. Automatic identification of artifacts in electrodermal activity data. In Proceedings of the Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, Milan, Italy, 25–29 August 2015; pp. 1934–1937. [Google Scholar]
- Xia, V.; Jaques, N.; Taylor, S.; Fedor, S.; Picard, R. Active learning for electrodermal activity classification. In Proceedings of the Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 12 December 2015; pp. 1–6. [Google Scholar]
- Alexander, D.M.; Trengove, C.; Johnston, P.; Cooper, T.; August, J.; Gordon, E. Separating individual skin conductance responses in a short interstimulus-interval paradigm. J. Neurosci. Methods 2005, 146, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.; Vagedes, J. How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int. J. Cardiol. 2013, 166, 15–29. [Google Scholar] [CrossRef] [PubMed]
- van Dooren, M.; de Vries, J.J.G.; Janssen, J.H. Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiol. Behav. 2012, 106, 298–304. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizzego, A.; Gabrieli, G.; Furlanello, C.; Esposito, G. Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals. Sensors 2020, 20, 6778. https://doi.org/10.3390/s20236778
Bizzego A, Gabrieli G, Furlanello C, Esposito G. Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals. Sensors. 2020; 20(23):6778. https://doi.org/10.3390/s20236778
Chicago/Turabian StyleBizzego, Andrea, Giulio Gabrieli, Cesare Furlanello, and Gianluca Esposito. 2020. "Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals" Sensors 20, no. 23: 6778. https://doi.org/10.3390/s20236778
APA StyleBizzego, A., Gabrieli, G., Furlanello, C., & Esposito, G. (2020). Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals. Sensors, 20(23), 6778. https://doi.org/10.3390/s20236778