An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Electrochemical Measurements
2.3. Dispersion of MoS2
2.4. Preparation of MoS2-Au-Ag/GCE
2.5. Detection of H2O2 Solutions with Different Concentrations and Released by Cells
3. Results and Discussion
3.1. Characterization of MoS2-Au-Ag/GCE Nanocomposite
3.2. Optimization of Experimental Parameters for the Fabrication of MoS2-Au-Ag/GCE
3.3. Electrocatalytic Activities of the Modified Electrodes
3.4. Amperometric Responses to H2O2
3.5. Repeatability and Stability of MoS2-Au-Ag/GCE
3.6. Detection of H2O2 Released from Normal Cells and Living Cancer Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Juang, F.-R.; Chern, W.-C. Octahedral Cu2O nanoparticles decorated by silver catalyst for high sensitivity nonenzymatic H2O2 detection. Mater. Sci. Semicond. Process. 2019, 101, 156–163. [Google Scholar] [CrossRef]
- Ohshima, H.; Tatemichi, M.; Sawa, T. Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys. 2003, 417, 3–11. [Google Scholar] [CrossRef]
- Ye, Y.; Kong, T.; Yu, X.; Wu, Y.; Zhang, K.; Wang, X. Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 2012, 89, 417–421. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, T.; Yan, X.; Gu, Y.; Liu, H.; Xu, Z.; Xu, H.; Li, X.; Zhang, Z.; Yang, M. Facile synthesis of 3D N-doped porous carbon nanosheets as highly active electrocatalysts toward the reduction of hydrogen peroxide. Nanoscale 2018, 10, 14923–14930. [Google Scholar] [CrossRef]
- Zou, J.; Cai, H.H.; Wang, D.Y.; Xiao, J.Y.; Zhou, Z.M.; Yuan, B.L. Spectrophotometric determination of trace hydrogen peroxide via the oxidative coloration of DPD using a Fenton system. Chemosphere 2019, 224, 646–652. [Google Scholar] [CrossRef]
- Yuan, J.C.; Shiller, A.M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Anal. Chem. 1999, 71, 1975–1980. [Google Scholar] [CrossRef]
- Yang, X.J.; Li, R.S.; Li, C.M.; Li, Y.F.; Huang, C.Z. Cobalt oxyhydroxide nanoflakes with oxidase-mimicking activity induced chemiluminescence of luminol for glutathione detection. Talanta 2020, 215. [Google Scholar] [CrossRef]
- Han, H.; He, X.; Wu, M.X.; Huang, Y.B.; Zhao, L.H.; Xu, L.L.; Ma, P.Y.; Sun, Y.; Song, D.Q.; Wang, X.H. A novel colorimetric and near-infrared fluorescence probe for detecting and imaging exogenous and endogenous hydrogen peroxide in living cells. Talanta 2020, 217. [Google Scholar] [CrossRef]
- Ren, M.G.; Deng, B.B.; Wang, J.Y.; Kong, X.Q.; Liu, Z.R.; Zhou, K.; He, L.W.; Lin, W.Y. A fast responsive two-photon fluorescent probe for imaging H2O2 in lysosomes with a large turn-on fluorescence signal. Biosens. Bioelectron. 2016, 79, 237–243. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, K.; Yang, H.; Li, Y.; Lan, H.; Liu, Y.; Zhang, X.; Yi, T. A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide. Anal. Chem. 2014, 86, 9970–9976. [Google Scholar] [CrossRef]
- Diouf, A.; El Bari, N.; Bouchikhi, B. A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Talanta 2020, 209, 120577. [Google Scholar] [CrossRef] [PubMed]
- Aragay, G.; Merkoci, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Liu, M.; Xie, S.B.; Zhou, J. Use of animal models for the imaging and quantification of angiogenesis. Exp. Anim. 2018, 67, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, R.; Rahman, M.A.; Rhee, C.K. Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Anal. Chem. 2012, 84, 6407–6415. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Chen, Z.; Reinecke, B.N.; Jaramillo, T.F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, H.; Cho, J. MoS(2) nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830. [Google Scholar] [CrossRef]
- Zhang, A.; Li, A.; Zhao, W.; Liu, J. Recent Advances in Functional Polymer Decorated Two-Dimensional Transition-Metal Dichalcogenides Nanomaterials for Chemo-Photothermal Therapy. Chemistry 2018, 24, 4215–4227. [Google Scholar] [CrossRef]
- Huang, Z.C.; Zhang, A.M.; Zhang, Q.; Pan, S.J.; Cui, D.X. Electrochemical Biosensor Based on Dewdrop-Like Platinum Nanoparticles-Decorated Silver Nanoflowers Nanocomposites for H2O2 and Glucose Detection. J. Electrochem. Soc. 2019, 166, B1138–B1145. [Google Scholar] [CrossRef]
- Sangili, A.; Annalakshmi, M.C.; Chen, S.-M.; Balasubramanian, P.; Sundrarajan, M. Synthesis of silver nanoparticles decorated on core-shell structured tannic acid-coated iron oxide nanospheres for excellent electrochemical detection and efficient catalytic reduction of hazardous 4-nitrophenol. Compos. Part B Eng. 2019, 162, 33–42. [Google Scholar] [CrossRef]
- Du, X.; Zhou, J. Application of biosensors to detection of epidemic diseases in animals. Res. Vet. Sci. 2018, 118, 444–448. [Google Scholar] [CrossRef]
- Fani, M.; Rezayi, M.; Pourianfar, H.R.; Meshkat, Z.; Makvandi, M.; Gholami, M.; Rezaee, S.A. Rapid and label-free electrochemical DNA biosensor based on a facile one-step electrochemical synthesis of rGO-PPy-(L-Cys)-AuNPs nanocomposite for the HTLV-1 oligonucleotide detection. Biotechnol. Appl. Bioc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Chen, Y.; Dong, W.H.; Han, B.K.; Liu, M.; Chen, Q.; Zhou, J. A nanocomposite-based electrochemical sensor for non-enzymatic detection of hydrogen peroxide. Oncotarget 2017, 8, 13039–13047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bo, X.; Ndamanisha, J.C.; Bai, J.; Guo, L. Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta 2010, 82, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Ansari, S.A.; Lee, J.; Cho, M.H. Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4692–4699. [Google Scholar] [CrossRef]
- Fu, Y.; Dai, J.; Ge, Y.; Zhang, Y.; Ke, H.; Zhang, W. A Novel Non-Enzymatic Electrochemical Hydrogen Peroxide Sensor Based on a Metal-Organic Framework/Carbon Nanofiber Composite. Molecules 2018, 23, 2552. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Yu, S.; Fan, Y.; Yang, C.; Xu, D. Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. Colloids Surf. B Biointerfaces 2013, 101, 106–110. [Google Scholar] [CrossRef]
- Tang, N.; Zheng, J.; Sheng, Q.; Zhang, H.; Liu, R. A novel H2O2 sensor based on the enzymatically induced deposition of polyaniline at a horseradish peroxide/aligned single-wall carbon nanotubes modified Au electrode. Analyst 2011, 136, 781–786. [Google Scholar] [CrossRef]
- Pei, Y.; Hu, M.; Tang, X.; Huang, W.; Li, Z.; Chen, S.; Xia, Y. Ultrafast one-pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide. Anal. Chim. Acta 2019, 1059, 49–58. [Google Scholar] [CrossRef]
- Guler, M.; Turkoglu, V.; Kivrak, A.; Karahan, F. A novel nonenzymatic hydrogen peroxide amperometric sensor based on Pd@CeO2-NH2 nanocomposites modified glassy carbon electrode. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 454–460. [Google Scholar] [CrossRef]
- Hussain, S. Comparative efficacy of epigallocatechin-3-gallate against H2O2-induced ROS in cervical cancer biopsies and HeLa cell lines. Wspolczesna Onkol. 2017, 21, 209–212. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhang, C.; Li, X.; Du, X. An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells. Sensors 2020, 20, 6817. https://doi.org/10.3390/s20236817
Hu J, Zhang C, Li X, Du X. An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells. Sensors. 2020; 20(23):6817. https://doi.org/10.3390/s20236817
Chicago/Turabian StyleHu, Jinchun, Congcong Zhang, Xue Li, and Xin Du. 2020. "An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells" Sensors 20, no. 23: 6817. https://doi.org/10.3390/s20236817
APA StyleHu, J., Zhang, C., Li, X., & Du, X. (2020). An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells. Sensors, 20(23), 6817. https://doi.org/10.3390/s20236817