NIR Spectroscopy for Discriminating and Predicting the Sensory Profile of Dry-Cured Beef “Cecina”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sensory Analysis
2.3. Near Infrared (NIR) Spectroscopy
2.4. Discriminant Analysis
2.5. Artificial Neural Network for Predicting Sensory Parameters
3. Results and Discussion
3.1. Sensory Data
3.2. Discrimination of the Samples According to Protected Geographical Indication (PGI) Quality Label
3.3. Prediction of the Sensory Parameters of Cecina
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Commission Regulation (EC) N° 1107/96 of 12 June 1996 on the Registration of Geographical Indications and Designations of Origin under the Procedure Laid down in Article 17 of Council Regulation (EEC) No 2081/92; European Commission: Brussels, Belgium, 1996; L148:1. [Google Scholar]
- Rodríguez-Lázaro, D.; Hernández-Pérez, M.; Capita, R.; Alonso-Calleja, C. Descriptive sensory properties of Cecina de León. Ital. J. Food Sci. 2018, 30, 249–255. [Google Scholar] [CrossRef]
- The International Organization for Standardization. ISO 5492. Sensory Analysis–Vocabulary; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- The International Organization for Standardization. ISO 8586. Sensory Analysis–General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- Pérez Elortondo, F.J.; Ojeda, M.; Albisu, M.; Salmerón, J.; Etayo, I.; Molina, M. Food quality certification: An approach for the development of accredited sensory evaluation methods. Food Qual. Prefer. 2007, 18, 425–439. [Google Scholar] [CrossRef]
- Etaio, I.; Albisu, M.; Ojeda, M.; Gil, P.F.; Salmerón, J.; Pérez Elortondo, F.J. Sensory quality control for food certification: A case study on wine. Method development. Food Control 2010, 21, 533–541. [Google Scholar] [CrossRef]
- González-Casado, A.; Jiménez-Carvelo, A.M.; Cuadros-Rodríguez, L. Sensory quality control of dry-cured ham: A comprehensive methodology for sensory panel qualification and method validation. Meat Sci. 2019, 149, 149–155. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, Y.; Fu, X.; Xie, L.; Ying, Y. Discrimination between Chinese rice wines of different geographical origins by NIRS and AAS. Eur. Food Res. Technol. 2007, 225, 313–320. [Google Scholar] [CrossRef]
- Herrero Latorre, C.; Peña Crecente, R.M.; García Martín, S.; Barciela García, J. A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication. Food Chem. 2013, 141, 3559–3565. [Google Scholar] [CrossRef]
- Firmani, P.; De Luca, S.; Bucci, R.; Marini, F.; Biancolillo, A. Near infrared (NIR) spectroscopy-based classification for the authentication of Darjeeling black tea. Food Control 2019, 100, 292–299. [Google Scholar] [CrossRef]
- Revilla, I.; Lastras, C.; González-Martín, M.I.; Vivar-Quintana, A.M.; Morales-Corts, R.; Gómez-Sánchez, M.A.; Pérez-Sánchez, R. Predicting the physicochemical properties and geographical ORIGIN of lentils using near infrared spectroscopy. J. Food Compos. Anal. 2019, 77, 84–90. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Casal, S.; Ferreira, I.C.F.R.; Peres, A.M.; Pereira, J.A.; Oliveira, M.B.P.P. Supervised Chemical Pattern Recognition in Almond (Prunus dulcis) Portuguese PDO Cultivars: PCA- and LDA-Based Triennial Study. J. Agric. Food Chem. 2012, 60, 9697–9704. [Google Scholar] [CrossRef]
- Karoui, R.; Mazerolles, G.; Bosset, J.-O.; de Baerdemaeker, J.; Dufour, E. Utilisation of mid-infrared spectroscopy for determination of the geographic origin of Gruyère PDO and L’Etivaz PDO Swiss cheeses. Food Chem. 2007, 105, 847–854. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; García-González, D.L.; Callejón, R.M.; Amigo, J.M. NIR spectroscopy and chemometrics for the typification of Spanish wine vinegars with a protected designation of origin. Food Control 2018, 89, 108–116. [Google Scholar] [CrossRef]
- Moscetti, R.; Radicetti, E.; Monarca, D.; Cecchini, M.; Massantini, R. Near infrared spectroscopy is suitable for the classification of hazelnuts according to Protected Designation of Origin. J. Sci. Food Agric. 2015, 95, 2619–2625. [Google Scholar] [CrossRef]
- Hernández-Jiménez, M.; Hernández-Ramos, P.; Martínez-Martín, I.; Vivar-Quintana, A.M.; González-Martín, I.; Revilla, I. Comparison of artificial neural networks and multiple regression tools applied to near infrared spectroscopy for predicting sensory properties of products from quality labels. Microchem. J. 2020, 159, 105459. [Google Scholar] [CrossRef]
- Pillonel, L.; Bütikofer, U.; Schlichtherle-Cerny, H.; Tabacchi, R.; Bosset, J.O. Geographic origin of European Emmental. Use of discriminant analysis and artificial neural network for classification purposes. Int. Dairy J. 2005, 15, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Ripoll, G.; Albertí, P.; Panea, B.; Olleta, J.L.; Sañudo, C. Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef. Meat Sci. 2008, 80, 697–702. [Google Scholar] [CrossRef]
- Prieto, N.; Andrés, S.; Giráldez, F.J.; Mantecón, A.R.; Lavín, P. Potential use of near infrared reflectance spectroscopy (NIRS) for the estimation of chemical composition of oxen meat samples. Meat Sci. 2006, 74, 487–496. [Google Scholar] [CrossRef]
- Ellekjaer, M.R.; Isaksson, T.; Solheim, R. Assessment of Sensory Quality of Meat Sausages Using Near Infrared Spectroscopy. J. Food Sci. 1994, 59, 456–464. [Google Scholar] [CrossRef]
- Ortiz, M.C.; Sarabia, L.; García-Rey, R.; Luque de Castro, M.D. Sensitivity and specificity of PLS-class modelling for five sensory characteristics of dry-cured ham using visible and near infrared spectroscopy. Anal. Chim. Acta 2006, 558, 125–131. [Google Scholar] [CrossRef]
- García-Rey, R.M.; García-Olmo, J.; De Pedro, E.; Quiles-Zafra, R.; Luque de Castro, M.D. Prediction of texture and colour of dry-cured ham by visible and near infrared spectroscopy using a fiber optic probe. Meat Sci. 2005, 70, 357–363. [Google Scholar] [CrossRef]
- Hernández-Ramos, P.; Vivar-Quintana, A.M.; Revilla, I.; González-Martín, M.I.; Hernández-Jiménez, M.; Martínez-Martín, I. Prediction of Sensory Parameters of Cured Ham: A Study of the Viability of the Use of NIR Spectroscopy and Artificial Neural Networks. Sensors 2020, 20, 5624. [Google Scholar] [CrossRef]
- Dongre, V.B.; Gandhi, R.S.; Singh, A.; Ruhil, A.P. Comparative efficiency of artificial neural networks and multiple linear regression analysis for prediction of first lactation 305-day milk yield in Sahiwal cattle. Livest. Sci. 2012, 147, 192–197. [Google Scholar] [CrossRef]
- Niazian, M.; Sadat-Noori, S.A.; Abdipour, M. Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models. Ind. Crops Prod. 2018, 117, 224–234. [Google Scholar] [CrossRef]
- Torkashvand, A.M.; Ahmadi, A.; Nikravesh, N.L. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). J. Integr. Agric. 2017, 16, 1634–1644. [Google Scholar] [CrossRef] [Green Version]
- Boletín Oficial del Estado. Orden de 27 de Junio por la que se Ratifica el Reglamento de la Denominación Específica “Cecina de León” y su Consejo Regulador; BOE: Madrid, Spain, 1994.
- González-Martín, I.; Hernández-Hierro, J.M.; Revilla, I.; Vivar-Quintana, A.; Lobos Ortega, I. The mineral composition (Ca, P, Mg, K, Na) in cheeses (cow’s, ewe’s and goat’s) with different ripening times using near infrared spectroscopy with a fibre-optic probe. Food Chem. 2011, 127, 147–152. [Google Scholar] [CrossRef]
- Molinero, C.; Martínez, B.; Rubio, B.; González-Fernández, C.; García-Cachán, M.D.; Jaime, I. The Anatomical Origin of Raw Meat Affects the Sensory and Chemical Characteristics of a Dry-Cured Beef Product: Cecina de León. Food Sci. Technol. Int. 2008, 14, 225–232. [Google Scholar] [CrossRef]
- Marušić, N.; Vidaček, S.; Janči, T.; Petrak, T.; Medić, H. Determination of volatile compounds and quality parameters of traditional Istrian dry-cured ham. Meat Sci. 2014, 96, 1409–1416. [Google Scholar] [CrossRef]
- Arnau, J.; Guerrero, L.; Hortós, M.; García-Regueiro, J.A. The Composition of White Film and White Crystals Found in Dry-Cured Hams. J. Sci. Food Agric. 1996, 70, 449–452. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Carballo, J. Influence of Anatomical Retail Cut on Physicochemical and Sensory Characteristics of Foal “Cecina”. Int. J. Food Prop. 2016, 19, 802–813. [Google Scholar] [CrossRef]
- Ruiz Pérez-Cacho, M.P.; Galán-Soldevilla, H.; León Crespo, F.; Molina Recio, G. Determination of the sensory attributes of a Spanish dry-cured sausage. Meat Sci. 2005, 71, 620–633. [Google Scholar] [CrossRef]
- Molinero Sastre, C. Caracterización y Optimización del Proceso Tecnológico de Elaboración de la Cecina de León. Ph.D. Thesis, University of Burgos, Burgos, Spain, 2009. [Google Scholar]
- Rubio, B.; Martínez, B.; González-Fernández, C.; García-Cachán, M.D.; Rovira, J.; Jaime, I. Influence of storage period and packaging method on sliced dry cured beef “Cecina de León”: Effects on microbiological, physicochemical and sensory quality. Meat Sci. 2006, 74, 710–717. [Google Scholar] [CrossRef]
- Aristoy, M.C.; Toldrá, F. Isolation of flavor peptides from raw pork meat and dry-cured ham. Dev. Food Sci. 1995, 37, 1323–1344. [Google Scholar] [CrossRef]
- Shenk, J.S.; Workman, J.J.; Westerhaus, M.O. Application of NIR spectroscopy to agricultural products. In Handbook of Near-Infrared Analysis, 3rd ed.; Burns, D.A., Ciurczak, E.W., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 419–474. [Google Scholar]
- Cozzolino, D.; Murray, I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT- Food Sci. Technol. 2004, 37, 447–452. [Google Scholar] [CrossRef]
- Tian, Y.Q.; McCall, D.G.; Dripps, W.; Yu, Q.; Gong, P. Using computer vision technology to evaluate the meat tenderness of grazing beef. Food Aust. 2005, 57, 322–326. [Google Scholar]
- Chandraratne, M.R.; Samarasinghe, S.; Kulasiri, D.; Bickerstaffe, R. Prediction of lamb tenderness using image surface texture features. J. Food Eng. 2006, 77, 492–499. [Google Scholar] [CrossRef]
- Balejko, J.A.; Nowak, Z.; Balejko, E. Artificial neural network as the tool in prediction rheological features of raw minced meat. Acta Sci. Pol. Technol. Aliment. 2012, 11, 273–281. [Google Scholar]
- Curto, B.; Moreno, V.; García-Esteban, J.A.; Blanco, F.J.; González, I.; Vivar, A.; Revilla, I. Accurate Prediction of Sensory Attributes of Cheese Using Near-Infrared Spectroscopy Based on Artificial Neural Network. Sensors 2020, 20, 3566. [Google Scholar] [CrossRef]
Mean | Minimum | Maximum | SD | |
---|---|---|---|---|
Appearance | ||||
Veined | 4.11 | 1.86 | 8.71 | 1.68 |
Fat color | 5.97 | 4.43 | 7.50 | 0.59 |
Color intensity | 5.78 | 3.57 | 8.00 | 1.09 |
Exudate | 3.11 | 1.29 | 7.71 | 1.15 |
White spots | 1.43 | 1.00 | 7.57 | 1.14 |
Flavor | ||||
Odor intensity | 5.83 | 4.14 | 7.00 | 0.56 |
Cured odor | 5.39 | 3.67 | 6.71 | 0.67 |
Smoked odor | 4.90 | 3.14 | 7.00 | 0.72 |
Rancid odor | 1.36 | 1.00 | 3.00 | 0.40 |
Moldy odor | 1.11 | 1.00 | 2.33 | 0.23 |
Flavor intensity | 6.14 | 4.00 | 7.14 | 0.62 |
Cured flavor | 5.56 | 3.67 | 6.86 | 0.74 |
Saltiness | 4.35 | 3.33 | 5.14 | 0.42 |
Sweetness | 1.54 | 1.00 | 2.29 | 0.30 |
Smoked flavor | 4.49 | 2.33 | 5.86 | 0.71 |
Rancidity | 1.61 | 1.00 | 3.83 | 0.57 |
Pungency | 1.38 | 1.00 | 2.00 | 0.25 |
Aftertaste | 5.42 | 3.29 | 6.71 | 0.58 |
Texture | ||||
Hardness | 3.88 | 2.33 | 6.43 | 0.94 |
Juiciness | 4.49 | 2.33 | 6.00 | 0.81 |
Fatness | 3.17 | 1.50 | 6.29 | 0.96 |
Fibrousness | 3.11 | 1.71 | 5.29 | 0.78 |
Chewiness | 3.60 | 2.29 | 5.43 | 0.84 |
Gumminess | 2.63 | 1.67 | 4.50 | 0.70 |
None 2,4,4,1 | None 2,10,10,1 | SNV 1,4,4,1 | Detrend 1,4,4,1 | Detrend 2,10,10,1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PGI | Not PGI | PGI | Not PGI | PGI | Not PGI | PGI | Non-PGI | PGI | Not PGI | |
PGI | 18 | 7 | 21 | 4 | 22 | 3 | 18 | 7 | 21 | 4 |
Non-PGI | 0 | 25 | 0 | 25 | 3 | 22 | 2 | 23 | 0 | 25 |
Hit rate | 72% | 100% | 84% | 100% | 88% | 88% | 72% | 92% | 84% | 100% |
Neurons | Percentage of Samples Correctly Classified | ||||
---|---|---|---|---|---|
Training Set | Validation Set | Test Set | Total | ||
Gradient Descent | 27 | 95.6 | 85.7 | 85.7 | 92.7 |
Gradient Descent with Adaptive Learning Rate | 30 | 98.5 | 85.7 | 85.7 | 94.8 |
Gradient Descent with Momentum | 9 | 89.7 | 100 | 85.7 | 90.6 |
Gradient Descent with Momentum and Adaptive Learning Rate | 19 | 98.5 | 85.7 | 100 | 96.9 |
Scaled Conjugate Gradient | 29 | 98.5 | 100 | 100 | 98.9 |
Conjugate Gradient with Powell-Beale | 10 | 100 | 100 | 92.8 | 98.9 |
Conjugate Gradient with Fletcher-Reeves | 18 | 98.5 | 100 | 85.7 | 96.9 |
Conjugate Gradient with Polak-Ribiere | 7 | 98.5 | 100 | 100 | 98.9 |
Levenberg-Marquardt | 13 | 100 | 100 | 100 | 100 |
Neurons | RSQ | MSEP | |
---|---|---|---|
Appearance | |||
Veined | 15 | 0.90 | 0.293 |
Fat color | 18 | 0.84 | 0.054 |
Color intensity | 8 | 0.89 | 0.135 |
Exudate | 13 | 0.87 | 0.190 |
White dots | 1 | 0.99 | 0.008 |
Flavor | |||
Odor intensity | 9 | 0.65 | 0.133 |
Cured odor | 14 | 0.87 | 0.066 |
Smoked odor | 25 | 0.73 | 0.183 |
Rancid odor | 9 | 0.84 | 0.025 |
Moldy odor | 6 | 0.91 | 0.005 |
Flavor intensity | 22 | 0.80 | 0.097 |
Cured flavor | 14 | 0.81 | 0.108 |
Saltiness | 7 | 0.83 | 0.037 |
Sweetness | 6 | 0.83 | 0.014 |
Smoked flavor | 8 | 0.81 | 0.101 |
Rancidity | 25 | 0.87 | 0.044 |
Pungency | 25 | 0.79 | 0.013 |
Aftertaste | 12 | 0.88 | 0.042 |
Texture | |||
Hardness | 13 | 0.90 | 0.090 |
Juiciness | 24 | 0.95 | 0.036 |
Fatness | 19 | 0.90 | 0.101 |
Fibrousness | 9 | 0.88 | 0.067 |
Chewiness | 18 | 0.92 | 0.050 |
Gumminess | 15 | 0.93 | 0.033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revilla, I.; Vivar-Quintana, A.M.; González-Martín, M.I.; Hernández-Jiménez, M.; Martínez-Martín, I.; Hernández-Ramos, P. NIR Spectroscopy for Discriminating and Predicting the Sensory Profile of Dry-Cured Beef “Cecina”. Sensors 2020, 20, 6892. https://doi.org/10.3390/s20236892
Revilla I, Vivar-Quintana AM, González-Martín MI, Hernández-Jiménez M, Martínez-Martín I, Hernández-Ramos P. NIR Spectroscopy for Discriminating and Predicting the Sensory Profile of Dry-Cured Beef “Cecina”. Sensors. 2020; 20(23):6892. https://doi.org/10.3390/s20236892
Chicago/Turabian StyleRevilla, Isabel, Ana M. Vivar-Quintana, María Inmaculada González-Martín, Miriam Hernández-Jiménez, Iván Martínez-Martín, and Pedro Hernández-Ramos. 2020. "NIR Spectroscopy for Discriminating and Predicting the Sensory Profile of Dry-Cured Beef “Cecina”" Sensors 20, no. 23: 6892. https://doi.org/10.3390/s20236892
APA StyleRevilla, I., Vivar-Quintana, A. M., González-Martín, M. I., Hernández-Jiménez, M., Martínez-Martín, I., & Hernández-Ramos, P. (2020). NIR Spectroscopy for Discriminating and Predicting the Sensory Profile of Dry-Cured Beef “Cecina”. Sensors, 20(23), 6892. https://doi.org/10.3390/s20236892