Moving Towards Intelligent Transportation via Artificial Intelligence and Internet-of-Things
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Zhang, X.; Wang, C.; Liu, Y.; Chen, X. Decision-making for the autonomous navigation of maritime autonomous surface ships based on scene division and deep reinforcement learning. Sensors 2019, 19, 4055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Liu, B.; Wang, Z.; Yi, X. Start from scratch: A crowdsourcing-based data fusion approach to support location-aware applications. Sensors 2019, 19, 4518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldini, G.; Geib, F.; Giuliani, R. Continuous authentication of automotive vehicles using inertial measurement units. Sensors 2019, 19, 5283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Huang, L.; Du, R. Simultaneous optimization of vehicle arrival time and signal timings within a connected vehicle environment. Sensors 2020, 20, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Zhang, X.; Zheng, Y.; Du, Y. An autonomous path planning model for unmanned ships based on deep reinforcement learning. Sensors 2020, 20, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chui, K.T.; Lytras, M.D.; Liu, R.W. A generic design of driver drowsiness and stress recognition using MOGA optimized deep MKL-SVM. Sensors 2020, 20, 1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Li, B.; Christie, M.D.; Li, Z.; Sotelo, M.A.; Ma, Y.; Li, Z. Hybrid dynamic traffic model for freeway flow analysis using a switched reduced-order unknown-input state observer. Sensors 2020, 20, 1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Liu, Z.; Wang, F.; Xie, Y.; Zhang, X. Using deep learning to forecast maritime vessel flows. Sensors 2020, 20, 1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, K.T.; Raj, R.G.; Shamsul Islam, S.M.; Wijewickrema, S.; Hossain, M.S.; Razmovski, T.; O’Leary, S. A Vision-based machine learning method for barrier access control using vehicle license plate authentication. Sensors 2020, 20, 3578. [Google Scholar] [CrossRef] [PubMed]
- Baldini, G.; Giuliani, R.; Geib, F. On the application of time frequency convolutional neural networks to road anomalies identification with accelerometers and gyroscopes. Sensors 2020, 20, 6425. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.W.; Nie, J.; Garg, S.; Xiong, Z.; Zhang, Y.; Hossain, M.S. Data-driven trajectory quality improvement for promoting intelligent vessel traffic services in 6G-enabled maritime IoT systems. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Zhang, Z.; Liu, R.W. GPU-accelerated compression and visualization of large-scale vessel trajectories in maritime IoT industries. IEEE Internet Things J. 2020, 7, 10794–10812. [Google Scholar] [CrossRef]
- Lytras, M.D.; Visvizi, A.; Torres-Ruiz, M.; Damiani, E.; Jin, P. IEEE access special section editorial: Urban computing and well-being in smart cities: Services, applications, policymaking considerations. IEEE Access 2020, 8, 72340–72346. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, X.; Duan, J. Dimensioning and layout planning of 5G-based vehicular edge computing networks towards intelligent transportation. IEEE Open J. Veh. Technol. 2020, 1, 146–155. [Google Scholar] [CrossRef]
- Darwish, T.S.; Bakar, K.A. Fog based intelligent transportation big data analytics in the internet of vehicles environment: Motivations, architecture, challenges, and critical issues. IEEE Access 2018, 6, 15679–15701. [Google Scholar] [CrossRef]
- Vossen, G.; Lytras, M.D.; Koudas, N. Revisiting the (machine) Semantic Web: The missing layers for the human Semantic Web. IEEE Trans. Knowl. Data Eng. 2007, 19, 145–148. [Google Scholar] [CrossRef]
- Zhuhadar, L.; Yang, R.; Lytras, M.D. The impact of social multimedia systems on cyberlearners. Comput. Hum. Behav. 2013, 29, 378–385. [Google Scholar] [CrossRef]
- Naeve, A.; Yli-Luoma, P.; Kravcik, M.; Lytras, M.D. A modelling approach to study learning processes with a focus on knowledge creation. Int. J. Technol. Enhanc. Learn. 2018, 1, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Spruit, M.; Lytras, M.D. Applied Data Science in Patient-centric Healthcare. Telemat. Inform. 2018, 35, 2018. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lytras, M.D.; Chui, K.T.; Liu, R.W. Moving Towards Intelligent Transportation via Artificial Intelligence and Internet-of-Things. Sensors 2020, 20, 6945. https://doi.org/10.3390/s20236945
Lytras MD, Chui KT, Liu RW. Moving Towards Intelligent Transportation via Artificial Intelligence and Internet-of-Things. Sensors. 2020; 20(23):6945. https://doi.org/10.3390/s20236945
Chicago/Turabian StyleLytras, Miltiadis D., Kwok Tai Chui, and Ryan Wen Liu. 2020. "Moving Towards Intelligent Transportation via Artificial Intelligence and Internet-of-Things" Sensors 20, no. 23: 6945. https://doi.org/10.3390/s20236945
APA StyleLytras, M. D., Chui, K. T., & Liu, R. W. (2020). Moving Towards Intelligent Transportation via Artificial Intelligence and Internet-of-Things. Sensors, 20(23), 6945. https://doi.org/10.3390/s20236945