Sparse Blind Deconvolution with Nonconvex Optimization for Ultrasonic NDT Application
Abstract
:1. Introduction
- Although accurate estimation parameters can be obtained through finite iterations, utilizing the optimization framework is time-consuming [20].
- Without prior waveform information, the optimization process is nonconvex, which means that a robust initialization algorithm is inevitable.
2. Optimization Models and Methods
2.1. Convolution Model of Ultrasonic Inspection
2.2. Initialization Based on Blind Gain Calibration
2.3. Alternating Optimization Method Based on PALM
3. Simulation Results
3.1. Stable Initialization with Phase Transitions
3.2. Numerical Comparison for Deconvolution Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Katunin, A.; Wronkowicz-Katunin, A.; Dragan, K. Impact Damage Evaluation in Composite Structures Based on Fusion of Results of Ultrasonic Testing and X-ray Computed Tomography. Sensors 2020, 20, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, N.; Basarab, A.; Kouame, D.; Tourneret, J.-Y. Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized Gaussian Priors. IEEE Trans. Image Process. 2016, 25, 3736–3750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Choi, A.; Kim, K. Monaural Sound Localization Based on Reflective Structure and Homomorphic Deconvolution. Sensors 2017, 17, 2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H.; Cho, S.; Zhang, S.; Li, X. Acoustic nonlinearity parameter measurements in a pulse-echo setup with the stress-free reflection boundary. J. Acoust. Soc. Am. 2018, 143, EL237–EL242. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zi, Y.; Zhao, J.; Yang, Z.; He, W.; Sun, H. An adaptive sparse deconvolution method for distinguishing the overlapping echoes of ultrasonic guided waves for pipeline crack inspection. Meas. Sci. Technol. 2017, 28, 035002. [Google Scholar] [CrossRef]
- Jin, H.; Chen, J.; Yang, K. A blind deconvolution method for attenuative materials based on asymmetrical Gaussian model. J. Acoust. Soc. Am. 2016, 140, 1184–1191. [Google Scholar] [CrossRef]
- Bossmann, F.; Plonka, G.; Peter, T.; Nemitz, O.; Schmitte, T. Sparse Deconvolution Methods for Ultrasonic NDT Application on TOFD and Wall Thickness Measurements. J. Nondestruct. Eval. 2012, 31, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Abdessalem, B.; Farid, C. Resolution Improvement of Ultrasonic Signals Using Sparse Deconvolution and Variational Mode Decomposition Algorithms. Russ. J. Nondestruct. Test. 2020, 56, 479–489. [Google Scholar] [CrossRef]
- Buzzoni, M.; Antoni, J.; D’Elia, G. Blind deconvolution based on cyclostationarity maximization and its application to fault identification. J. Sound Vib. 2018, 432, 569–601. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, N.; Zhang, W.; Wang, Z. Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis. J. Sound Vib. 2018, 425, 53–69. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Liang, W.; Chen, L. l(0)-norm regularized minimum entropy deconvolution for ultrasonic NDT & E. NDT E Int. 2012, 47, 80–87. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Gao, C.; Song, Y. Acoustic microscopy signal processing method for detecting near-surface defects in metal materials. NDT E Int. 2019, 103, 130–144. [Google Scholar] [CrossRef]
- Li, X.; Ling, S.; Strohmer, T.; Wei, K. Rapid, robust, and reliable blind deconvolution via nonconvex optimization. Appl. Comput. Harmon. Anal. 2019, 47, 893–934. [Google Scholar] [CrossRef] [Green Version]
- Qu, Q.; Li, X.; Zhu, Z. Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent. SIAM J. Imaging Sci. 2020, 13, 1630–1652. [Google Scholar] [CrossRef]
- Wang, L.; Chi, Y. Blind Deconvolution From Multiple Sparse Inputs. IEEE Signal Process. Lett. 2016, 23, 1384–1388. [Google Scholar] [CrossRef]
- Repetti, A.; Mai Quyen, P.; Duval, L.; Chouzenoux, E.; Pesquet, J.-C. Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed l(1)/l(2) Regularization. IEEE Signal Process. Lett. 2015, 22, 539–543. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Wang, X.; Wang, W.; Huang, L. Sparse Blind Speech Deconvolution with Dynamic Range Regularization and Indicator Function. Circuits Syst. Signal Process. 2017, 36, 4145–4160. [Google Scholar] [CrossRef] [Green Version]
- Jing, S.; Hall, J.; Zheng, Y.R.; Xiao, C. Signal Detection for Underwater IoT Devices With Long and Sparse Channels. IEEE Internet Things J. 2020, 7, 6664–6675. [Google Scholar] [CrossRef]
- Zhang, Y.; Kuo, H.-W.; Wright, J. Structured Local Optima in Sparse Blind Deconvolution. IEEE Trans. Inf. Theory 2020, 66, 419–452. [Google Scholar] [CrossRef]
- Yang, H.; Su, X.; Chen, S. Blind Image Deconvolution Algorithm Based on Sparse Optimization with an Adaptive Blur Kernel Estimation. Appl. Sci. 2020, 10, 2437. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Bolte, J.; Sabach, S.; Teboulle, M. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 2014, 146, 459–494. [Google Scholar] [CrossRef]
- Chouzenoux, E.; Pesquet, J.-C.; Repetti, A. Variable Metric Forward-Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function. J. Opt. Theory Appl. 2014, 162, 107–132. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, D.; Tay, T.; Fergus, R. Blind Deconvolution Using a Normalized Sparsity Measure. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 20–25 June 2011; pp. 233–240. [Google Scholar] [CrossRef]
- Li, Y.; Lee, K.; Bresler, Y. Blind Gain and Phase Calibration via Sparse Spectral Methods. IEEE Trans. Inf. Theory 2019, 65, 3097–3123. [Google Scholar] [CrossRef] [Green Version]
- Gribonval, R.; Chardon, G.; Daudet, L. Blind calibration for compressed sensing by convex optimization. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 25–30 March 2012; pp. 2713–2716. [Google Scholar]
- Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 2005, 4, 1168–1200. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Babu, P.; Palomar, D.P. Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning. IEEE Trans. Signal Process. 2017, 65, 794–816. [Google Scholar] [CrossRef]
- Mai Quyen, P.; Oudompheng, B.; Nicolas, B.; Mars, J.I. Sparse deconvolution for moving-source localization. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing Proceedings, Shanghai, China, 20–25 March 2016; pp. 355–359. [Google Scholar]
Algorithm | Running Time (s) | ||||||
---|---|---|---|---|---|---|---|
LS | |||||||
MED | |||||||
M-S-MED | |||||||
OMED | |||||||
CVX | |||||||
SOOT | |||||||
proposed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Shi, Y.; Du, K.; Zhu, Q.; Zhang, W. Sparse Blind Deconvolution with Nonconvex Optimization for Ultrasonic NDT Application. Sensors 2020, 20, 6946. https://doi.org/10.3390/s20236946
Gao X, Shi Y, Du K, Zhu Q, Zhang W. Sparse Blind Deconvolution with Nonconvex Optimization for Ultrasonic NDT Application. Sensors. 2020; 20(23):6946. https://doi.org/10.3390/s20236946
Chicago/Turabian StyleGao, Xuyang, Yibing Shi, Kai Du, Qi Zhu, and Wei Zhang. 2020. "Sparse Blind Deconvolution with Nonconvex Optimization for Ultrasonic NDT Application" Sensors 20, no. 23: 6946. https://doi.org/10.3390/s20236946
APA StyleGao, X., Shi, Y., Du, K., Zhu, Q., & Zhang, W. (2020). Sparse Blind Deconvolution with Nonconvex Optimization for Ultrasonic NDT Application. Sensors, 20(23), 6946. https://doi.org/10.3390/s20236946