Direct and Label-Free Determination of Human Glycated Hemoglobin Levels Using Bacteriorhodopsin as the Biosensor Transducer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sensing Chips
2.3. Detection of Pure HbA0, HbA1c, and Clinical Samples
2.4. Characterization of Sensing Chips
3. Results and Discussions
3.1. BR and Hb Absorption Spectra
3.2. Hb Immunosensor
3.3. HbA0 and HbA1c Aptasensors
3.4. Clinical Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bookchin, R.M.; Gallop, P.M. Structure of haemoglobin A1c: Nature of the N-terminal beta chain blocking group. Biochem. Biophys. Res. Commun. 1968, 32, 86–93. [Google Scholar] [CrossRef]
- Koenig, R.J.; Peterson, C.M.; Jones, R.L.; Saudek, C.; Lehrman, M.; Cerami, A. Correlation of glucose regulation and hemoglobin A1c in diabetes mellitus. N. Engl. J. Med. 1976, 295, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Wangoo, N.; Kaushal, J.; Bhasin, K.; Mehta, S.; Suri, C.R. Zeta potential based colorimetric immunoassay for the direct detection of diabetic marker HbA1c using gold nanoprobes. Chem. Commun. 2010, 46, 5755–5757. [Google Scholar] [CrossRef]
- Weykamp, C. HbA1c: A review of analytical and clinical aspects. Ann. Lab. Med. 2013, 33, 393–400. [Google Scholar] [PubMed] [Green Version]
- Pundir, C.S.; Chawla, S. Determination of glycated hemoglobin with special emphasis on biosensing methods. Anal. Biochem. 2014, 444, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.W.; Li, J.; Yang, C.H.; Shiesh, S.C.; Lee, G.B. An integrated microfluidic system for measurement of glycated hemoglobin levels by using an aptamer-antibody assay on magnetic beads. Biosens. Bioelectron. 2015, 68, 397–403. [Google Scholar] [CrossRef]
- Pandey, R.; Dingari, N.C.; Spegazzini, N.; Dasari, R.R.; Horowitz, G.L.; Barman, I. Emerging trends in optical sensing of glycemic markers for diabetes monitoring. Trends Analyt. Chem. 2015, 64, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Anzai, J. Recent progress in electrochemical HbA1c sensors: A review. Materials 2015, 8, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Ang, S.H.; Rambeli, M.; Thevarajah, T.M.; Alias, Y.B.; Khor, S.M. Quantitative, single-step dual measurement of hemoglobin A1c and total hemoglobin in human whole blood using a gold sandwich immunochromatographic assay for personalized medicine. Biosens. Bioelectron. 2016, 78, 187–193. [Google Scholar] [CrossRef]
- Hu, P.; Wu, X.; Hu, S.; Tang, Z.; Dai, G.; Liu, Y. Upconversion nanoparticle arrays for detecting glycated hemoglobin with high sensitivity and good reusability. RSC Adv. 2016, 6, 102226–102230. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, C.; Chen, W.; Zhao, H.; Zhang, J.; Zhou, W.; Zeng, J.; Wang, J.; Wang, D. Quantification of hemoglobin A1c by off-line HPLC separation and liquid chromatography-tandem mass spectrometry: A modification of the IFCC reference measurement procedure. Clin. Chem. Lab. Med. 2016, 54, 569–576. [Google Scholar] [CrossRef]
- Lin, H.; Yi, J. Current Status of HbA1c Biosensors. Sensors 2017, 17, 1798. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Manasreh, M.O. An in-vitro optical sensor designed to estimate glycated hemoglobin levels. Sensors 2018, 18, 1084. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Jiang, C.; Liu, G. Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens. Bioelectron. 2019, 123, 85–100. [Google Scholar] [CrossRef]
- Jeppsson, J.O.; Kobold, U.; Barr, J.; Finke, A.; Hoelzel, W.; Hoshino, T.; Miedema, K.; Mosca, A.; Mauri, P.; Paroni, R.; et al. Approved IFCC reference method for the measurement of HbA1c in human blood. Clin. Chem. Lab. Med. 2002, 40, 78–89. [Google Scholar] [CrossRef]
- Davis, J.E.; McDonald, J.M.; Jarett, L. A high-performance liquid chromatography method for hemoglobin A1c. Diabetes 1978, 27, 102–107. [Google Scholar] [CrossRef]
- Kiran, M.S.; Itoh, T.; Yoshida, K.; Kawashima, N.; Biju, V.; Ishikawa, M. Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy. Anal. Chem. 2010, 82, 1342–1348. [Google Scholar] [CrossRef]
- Lin, H.I.; Wu, C.C.; Yang, C.H.; Chang, K.W.; Lee, G.B.; Shiesh, S.C. Selection of aptamers specific for glycated hemoglobin and total hemoglobin using on-chip SELEX. Lab Chip 2015, 15, 486–494. [Google Scholar] [CrossRef]
- Eissa, S.; Zourob, M. Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci. Rep. 2017, 7, 1016. [Google Scholar] [CrossRef] [Green Version]
- Sakurabayashi, I.; Watano, T.; Yonehara, S.; Ishimaru, K.; Hirai, K.; Komori, T.; Yagi, M. New Enzymatic assay for glycohemoglobin. Clin. Chem. 2003, 4, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Schaffert, L.N.; English, E.; Heneghan, C.; Price, C.P.; Van den Bruel, A.; Plüddemann, A. Point-of-care HbA1c tests—Diagnosis of diabetes. In Horizon Scan Report 0044; National Institue for Health Research: London, UK, 2016. [Google Scholar]
- Moon, J.M.; Kim, D.M.; Kim, M.H.; Han, J.Y.; Jung, D.K.; Shim, Y.B. A disposable amperometric dual-sensor for the detection of hemoglobin and glycated hemoglobin in a finger prick blood sample. Biosens. Bioelectron. 2017, 91, 128–135. [Google Scholar] [CrossRef]
- Chen, H.M.; Jheng, K.R.; Yu, A.D. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosens. Bioelectron. 2017, 91, 24–31. [Google Scholar] [CrossRef]
- Wu, H.H.; Liao, X.Q.; Wu, X.Y.; Lin, C.D.; Jheng, K.R.; Chen, H.R.; Wang, Y.Y.; Chen, H.M. Versatile protein-A coated photoelectric immunosensors with a purple-membrane monolayer transducer fabricated by affinity-immobilization on a graphene-oxide complexed linker and by shear flow. Sensors 2018, 18, 4493. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.J.; Schabert, F.A.; Büldt, G.; Engel, A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys. J. 1995, 68, 1681–1686. [Google Scholar] [CrossRef] [Green Version]
- Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 2000, 100, 1755–1776. [Google Scholar] [CrossRef]
- Li, Y.T.; Tian, Y.; Tian, H.; Tu, T.; Gou, G.Y.; Wang, Q.; Qiao, Y.C.; Yang, Y.; Ren, T.L. A review on bacteriorhodopsin-based bioelectronic devices. Sensors 2018, 18, 1368. [Google Scholar] [CrossRef] [Green Version]
- Miyasaka, T.; Koyama, K. Image sensing and processing by a bacteriorhodopsin-based artificial photoreceptor. Appl. Opt. 1993, 32, 6371–6379. [Google Scholar] [CrossRef]
- Oesterhelt, D.; Stoeckenius, W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974, 31, 667–678. [Google Scholar]
- Zijlstra, W.G.; Buursma, A. Spectrophotometry of hemoglobin: Absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin. Comp. Biochem. Physiol. 1997, 118B, 743–749. [Google Scholar] [CrossRef]
- Jo, E.J.; Mun, H.; Kim, M.G. Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles. Anal. Chem. 2016, 88, 2742–2746. [Google Scholar] [CrossRef]
- Chen, H.M.; Lin, C.J.; Jheng, K.R.; Kosasih, A.; Chang, J.Y. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids Surf. B Biointerface 2014, 116, 482–488. [Google Scholar]
- Liu, P.; Zhu, Z.; Zeng, C.; Nie, G. Specific absorption spectra of hemoglobin at different PO2 levels: Potential noninvasive method to detect PO2 in tissues. J. Biomed. Opt. 2012, 17, 125002. [Google Scholar] [CrossRef]
- Voïtchovsky, K.; Contera, S.A.; Kamihira, M.; Watts, A.; Ryan, J.F. Differential stiffness and lipid mobility in the leaflets of purple membranes. Biophys. J. 2006, 90, 2075–2085. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.A.; Garber, A.; Mooradian, A.D.; Schneider, S.; Henry, D. Metformin/glyburide tablets as first-line treatment in type 2 diabetes: Distribution of HbA1c response. Diabetes Res. Clin. Pract. 2000, 50 (Suppl. 1), 51. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Anjana, R.M.; Mohan, V. Drugs affecting HbA1c levels. Indian J. Endocrinol. Metab. 2012, 16, 528–531. [Google Scholar]
- Radin, M.S. Pitfalls in hemoglobin A1c measurement: When results may be misleading. J. Gen. Intern. Med. 2014, 29, 388–394. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-C.; Lin, C.-Y.; Chen, H.-M.; Kuo, L.-P.; Hsieh, C.-E.; Wang, X.-H.; Cheng, C.-W.; Wu, C.-Y.; Chen, Y.-S. Direct and Label-Free Determination of Human Glycated Hemoglobin Levels Using Bacteriorhodopsin as the Biosensor Transducer. Sensors 2020, 20, 7274. https://doi.org/10.3390/s20247274
Lin Y-C, Lin C-Y, Chen H-M, Kuo L-P, Hsieh C-E, Wang X-H, Cheng C-W, Wu C-Y, Chen Y-S. Direct and Label-Free Determination of Human Glycated Hemoglobin Levels Using Bacteriorhodopsin as the Biosensor Transducer. Sensors. 2020; 20(24):7274. https://doi.org/10.3390/s20247274
Chicago/Turabian StyleLin, Ying-Chin, Ching-Yu Lin, Hsiu-Mei Chen, Li-Pin Kuo, Cheng-En Hsieh, Xiang-He Wang, Chih-Wen Cheng, Chih-Yin Wu, and Yi-Su Chen. 2020. "Direct and Label-Free Determination of Human Glycated Hemoglobin Levels Using Bacteriorhodopsin as the Biosensor Transducer" Sensors 20, no. 24: 7274. https://doi.org/10.3390/s20247274
APA StyleLin, Y. -C., Lin, C. -Y., Chen, H. -M., Kuo, L. -P., Hsieh, C. -E., Wang, X. -H., Cheng, C. -W., Wu, C. -Y., & Chen, Y. -S. (2020). Direct and Label-Free Determination of Human Glycated Hemoglobin Levels Using Bacteriorhodopsin as the Biosensor Transducer. Sensors, 20(24), 7274. https://doi.org/10.3390/s20247274