Two-Stage Interference Cancellation for Device-to-Device Caching Networks
Abstract
:1. Introduction
1.1. Related Work
1.2. Paper Organization
2. Problem Formulation
2.1. Wireless D2D Caching Networks
2.2. Outage-Based Throughput
3. Cache-Enabled Interference Cancellation
3.1. Step 1: File Request and Transfer at the Transmitter Side
3.2. Step 2: Interference Cancellation at the Receiver Side
3.2.1. First-Stage Interference Cancellation
3.2.2. Second-Stage Interference Cancellation
Algorithm 1: Second-stage IC of the proposed scheme. |
1 Initialization: Set and construct and from the first-stage IC.
2 For 3 If 4 Decode from . 5 Update . 6 Construct from by cancelling interference caused by . 7 If 8 Return ‘no outage’ for node j. 9 End 10 Else 11 Return ‘outage’ for node j. 12 End 13 End 14 Result: ‘no outage’ or ‘outage’ for node j. |
4. Simulation Results
4.1. Caching Placement
4.2. Simulation Environment
4.3. Numerical Results and Discussions
4.3.1. Throughput Comparison with Respect to the Zipf Exponent
4.3.2. Throughput Comparison with Respect to Caching Capability
4.3.3. Throughput comparison with Respect to the Library Size
4.3.4. Impacts of Imperfect Channel Estimation at The receiver Side
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021. In Cisco Public Information; Cisco: San Jose, CA, USA, 2017. [Google Scholar]
- Shanmugam, K.; Golrezaei, N.; Dimakis, A.G.; Molisch, A.F.; Caire, G. Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Trans. Inf. Theory 2013, 59, 8402–8413. [Google Scholar] [CrossRef]
- Chae, S.H.; Choi, W. Caching placement in stochastic wireless caching helper networks: Channel selection diversity via caching. IEEE Trans. Wireless Commun. 2016, 15, 6626–6637. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Lee, J.; Quek, T.Q.S.; Kountouris, M. Cooperative caching and transmission design in cluster-centric small cell networks. IEEE Trans. Wireless Commun. 2017, 16, 3401–3415. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Caire, G.; Molisch, A.F. Wireless device-to-device caching networks: Basic principles and system performance. IEEE J. Select. Areas Commun. 2016, 34, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.; Yang, C.; Cao, T. Modeling and analysis for cache-enabled networks with dynamic traffic. IEEE Commun. Lett. 2016, 20, 2506–2509. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Pappas, N.; Kountouris, M. Probabilistic caching in wireless D2D networks: Cache hit optimal versus throughput optimal. IEEE Commun. Lett. 2017, 21, 584–587. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, C.; Yao, Y.; Xia, B.; Chen, Z.; Li, X. Interference management in cache-enabled stochastic networks: A content diversity approach. IEEE Access 2017, 5, 1609–1617. [Google Scholar] [CrossRef]
- Etkin, R.H.; Tse, D.N.C.; Wang, H. Gaussian interference channel capacity to within one bit. IEEE Trans. Inf. Theory 2008, 54, 5534–5562. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Haenggi, M. The Performance of Successive Interference Cancellation in Random Wireless Networks. IEEE Trans. Inf. Theory 2014, 60, 6368–6388. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.-W.; Hong, S.-N.; Ji, M.; Caire, G.; Molisch, A.F. Wireless multihop device-to-device caching networks. IEEE Trans. Inf. Theory 2017, 63, 1662–1676. [Google Scholar] [CrossRef]
- Do, T.A.; Jeon, S.-W. Shin, W.-Y. How to cache in mobile hybrid IoT networks? IEEE Access 2019, 7, 27814–27828. [Google Scholar] [CrossRef]
- Prabh, K.S.; Abdelzaher, T.F. Energy-conserving data cache placement in sensor networks. ACM Trans. Sensor Netw. 2004, 1, 178–203. [Google Scholar] [CrossRef]
- Dimokas, N.; Katsaros, D.; Manolopoulos, Y. Cooperative caching in wireless multimedia sensor networks. Mobile. Netw. Appl. 2008, 13, 337–356. [Google Scholar] [CrossRef] [Green Version]
- Tiglao, N.M.; Grilo, A. An analytical model for transport layer caching in wireless sensor networks. Perform. Eval. 2012, 69, 227–245. [Google Scholar] [CrossRef]
- Alipio, M.; Tiglao, N.M.; Grilo, A.; Bokhari, F.; Chaudhry, U.; Qureshi, S. Cache-based transport protocols in wireless sensor networks: A survey and future directions. J. Netw. Comput. Appl. 2017, 88, 29–49. [Google Scholar] [CrossRef]
- Vural, S.; Navaratnam, P.; Wang, N.; Wang, C.; Dong, L.; Tafazolli, R. In-network caching of Internet-of-Things data. In Proceedings of the IEEE ICC, Sydney, Australia, 10–14 June 2014. [Google Scholar]
- Niyato, D.; Kim, D.I.; Wang, P.; Song, L. A novel caching mechanism for Internet of Things (IoT) sensing service with energy harvesting. In Proceedings of the IEEE ICC, Kuala Lumpur, Malaysia, 23–27 May 2016. [Google Scholar]
- Song, F.; Ai, Z.-Y.; Li, J.-J.; Pau, G.; Collotta, M.; You, I.; Zhang, H.-K. Smart collaborative caching for information-centric IoT in fog computing. Sensors 2017, 17, 2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Ansari, N. Dynamic resource caching in the IoT application layer for smart cities. IEEE Internet Things 2018, 5, 606–613. [Google Scholar] [CrossRef]
- 3rd Generation Partnership Project (3GPP). Study on Provision of Low-Cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE. TR36.888 V12.0.0. June 2013. Available online: http://www.3gpp.org/ftp/Specs/archive/36_series/36.888/36888-c00.zip (accessed on 17 December 2019).
- Breslau, L.; Cao, P.; Fan, L.; Phillips, G.; Shenker, S. Web caching and Zipf-like distributions: Evidence and implications. In Proceedings of the IEEE INFOCOM, New York, NY, USA, 21–25 March 1999. [Google Scholar]
- Song, H.-G.; Chae, S.H.; Shin, W.-Y.; Jeon, S.-W. Predictive caching via learning temporal distribution of content requests. IEEE Commun. Lett. Dec. 2019, 23, 2335–2339. [Google Scholar] [CrossRef]
Parameter | Assumption |
---|---|
Network area, | 100 |
Number of nodes, n | 100 |
Path-loss exponent, | 4 |
Channel model | Rayleigh fading |
Channel estimation | Perfect at the receiver side, unknown to the transmitter side |
File popularity distribution | Zipf distribution |
Analog to digital converter (ADC) resolution | 8 bits |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, S.-W.; Chae, S.H. Two-Stage Interference Cancellation for Device-to-Device Caching Networks. Sensors 2020, 20, 780. https://doi.org/10.3390/s20030780
Jeon S-W, Chae SH. Two-Stage Interference Cancellation for Device-to-Device Caching Networks. Sensors. 2020; 20(3):780. https://doi.org/10.3390/s20030780
Chicago/Turabian StyleJeon, Sang-Woon, and Sung Ho Chae. 2020. "Two-Stage Interference Cancellation for Device-to-Device Caching Networks" Sensors 20, no. 3: 780. https://doi.org/10.3390/s20030780
APA StyleJeon, S. -W., & Chae, S. H. (2020). Two-Stage Interference Cancellation for Device-to-Device Caching Networks. Sensors, 20(3), 780. https://doi.org/10.3390/s20030780