The Design of CNN Architectures for Optimal Six Basic Emotion Classification Using Multiple Physiological Signals
Abstract
:1. Introduction
2. Related Works
2.1. Definition of Emotion and Study Using Physiological Signal
2.2. Emotion Analysis Method
2.3. Heart Rate Variability (HRV) Analysis
2.4. Emotion Classification Using Machine Learning and Deep Learning
3. Dataset
3.1. Experiment
3.2. Data Processing
4. Method
4.1. Parameter Combination
4.2. Convolution Neural Network Model
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sohn, J.H. Review on Discrete, Appraisal, and Dimensional Models of Emotion. J. Ergon. Soc. Korea 2011, 30, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Song, B.C.; Kim, D.H.; Choi, D.Y.; Lee, M.K. Emotion Recognition Technology Trends. In Weekly ICT Trends; Seok, J.B., Ed.; Institute of Information & Communications Technology Planning & Evaluation: Daejeon, Korea, 2018; Volume 1868, pp. 18–29. [Google Scholar]
- Calvo, R.A.; Brown, I.; Scheding, S. Effect of Experimental Factors on the Recognition of Affective Mental States through Physiological Measures. In AI 2009: Advances in Artificial Intelligence; Nicholson, A., Li, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 62–70. [Google Scholar]
- Jang, E.-H.; Park, B.-J.; Kim, S.-H.; Sohn, J.-H. Classification of Negative Emotions using Machine Learning Algorithms Based on Physiological Signals. Available online: https://dbpia.co.kr/journal/articleDetail?nodeId=NODE01878208# (accessed on 4 February 2020).
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Levenson, R.W.; Ekman, P.; Friesen, W.V. Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology 1990, 27, 363–384. [Google Scholar] [CrossRef] [PubMed]
- Nasoz, F.; Alvarez, K.; Lisetti, C.L.; Finkelstein, N. Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognit. Technol. Work 2004, 6, 4–14. [Google Scholar] [CrossRef]
- Wagner, J.; Kim, J.; Andre, E. From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification. In Proceedings of the 2005 IEEE International Conference on Multimedia and Expo, Amsterdam, The Netherlands, 6–8 July 2005. [Google Scholar]
- Zhuang, X.; Rozgić, V.; Crystal, M. Compact unsupervised EEG response representation for emotion recognition. In Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Valencia, Spain, 1–4 June 2014. [Google Scholar]
- Samara, A.; Menezes, M.L.R.; Galway, L. Feature Extraction for Emotion Recognition and Modelling Using Neurophysiological Data. In Proceedings of the 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 International Symposium on Cyberspace and Security (IUCC-CSS), Granada, Spain, 14–16 December 2016. [Google Scholar]
- Zong, C.; Chetouani, M. Hilbert-Huang transform based physiological signals analysis for emotion recognition. In Proceedings of the 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, UAE, 14–17 December 2009. [Google Scholar]
- Torres-Valencia, C.A.; García-Arias, H.F.; López, M.A.Á.; Orozco-Gutiérrez, A.A. Comparative analysis of physiological signals and electroencephalogram (EEG) for multimodal emotion recognition using generative models. In Proceedings of the 2014 XIX Symposium on Image, Signal Processing and Artificial Vision, Armenia, Colombia, 17–19 September 2014. [Google Scholar]
- Gong, P.; Ma, H.T.; Wang, Y. Emotion recognition based on the multiple physiological signals. In Proceedings of the 2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016. [Google Scholar]
- Petrantonakis, P.C.; Hadjileontiadis, L.J. Emotion Recognition from Brain Signals Using Hybrid Adaptive Filtering and Higher Order Crossings Analysis. IEEE Trans. Affect. Comput. 2010, 1, 81–97. [Google Scholar] [CrossRef]
- Verma, G.K.; Tiwary, U.S. Multimodal fusion framework: A multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 2014, 102, 162–172. [Google Scholar] [CrossRef]
- Agrafioti, F.; Hatzinakos, D.; Anderson, A.K. ECG Pattern Analysis for Emotion Detection. IEEE Trans. Affect. Comput. 2012, 3, 102–115. [Google Scholar] [CrossRef]
- Tripathi, S.; Acharya, S.; Sharma, R.D.; Mittal, S.; Bhattacharya, S. Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset. In Proceedings of the Twenty-Ninth AAAI Conference, Francisco, CA, USA, 6–9 February 2017. [Google Scholar]
- Levi, G.; Hassner, T. Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WC, USA, 9–13 November 2015. [Google Scholar]
- Zheng, W.; Zhu, J.; Peng, Y.; Lu, B. EEG-based emotion classification using deep belief networks. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo (ICME), Chengdu, China, 14–18 July 2014. [Google Scholar]
- Zhang, Q.; Chen, X.; Zhan, Q.; Yang, T.; Xia, S. Respiration-based emotion recognition with deep learning. Comput. Ind. 2017, 92, 84–90. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, L.; Zhao, D.; Zhou, J.; Zhang, W. Emotion Recognition from Chinese Speech for Smart Affective Services Using a Combination of SVM and DBN. Sensors 2017, 17, 1694. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhao, Y.; Jiang, D.; Zhang, Y.; Wang, F.; Gonzalez, I.; Valentin, E.; Sahli, H. Hybrid Deep Neural Network--Hidden Markov Model (DNN-HMM) Based Speech Emotion Recognition. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2–5 September 2013. [Google Scholar]
- Kim, D.K.; Ahn, S.; Park, S.; Whang, M. Interactive emotional lighting system using physiological signals. IEEE Trans. Consum. Electron. 2013, 59, 765–771. [Google Scholar] [CrossRef]
- Kim, D.K.; Cho, Y.; Park, K. Mediating individual affective experience through the emotional photo frame. J. Ambient Intell. Smart Environ. 2015, 7, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Kim, D.K. Emotional Lighting System Able to Emotion Reasoning Using Fuzzy Inference. J. Theor. Appl. Inf. Technol. 2018, 96, 1357–1366. [Google Scholar]
- Kim, D.K.; Kim, J.; Lee, E.C.; Whang, M.; Cho, Y. Interactive emotional content communications system using portable wireless biofeedback device. IEEE Trans. Consum. Electron. 2011, 57, 1929–1936. [Google Scholar] [CrossRef]
- Jardim-Goncalves, R.; Sarraipa, J.; Luis-Ferreira, F.; Kadar, M. Smart Techniques for Emotional Status Detection of Students During Classroom Attendance. Available online: https://www.researchgate.net/publication/309155399_Smart_Techniques_for_Emotional_Status_Detection_of_Students_During_Classroom_Attendance (accessed on 4 February 2020).
- Russell, J. A Circumplex Model of Affect. J. Pers. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Paul, E. The Argument and Evidence about Universals in Facial Expression of Emotion, Handbook of Social Psychophysiology; John Wiley & Sons: Oxford, UK, 1989; pp. 143–164. [Google Scholar]
- García, H.F.; Álvarez, M.A.; Orozco, Á.A. Gaussian process dynamical models for multimodal affect recognition. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Zheng, W.; Zhu, J.; Lu, B. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Consum. Electron. 2018, 10, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Rami, A.; Rasha, H.; Hisham, A.; Mohammad, I.D. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution. Sensors 2018, 18, 2739. [Google Scholar]
- Stevens, M. Multimodal Signals and Communication. In Sensory Ecology, Behaviour, and Evolution, 1st ed.; Oxford University Press: Oxford, UK, 2013; pp. 89–102. [Google Scholar]
- Huang, X.; Kortelainen, J.; Zhao, G.; Li, X.; Moilanen, A.; Seppänen, T.; Pietikäinen, M. Multi-modal Emotion Analysis from Facial Expressions and Electroencephalogram. Comput. Vis. Image Underst. 2015, 147, 114–124. [Google Scholar] [CrossRef]
- Pérez, A.K.; Quintero, C.A.; Rodríguez, S.; Rojas, E.; Peña, O.; De La Rosa, F. Identification of Multimodal Signals for Emotion Recognition in the Context of Human-Robot Interaction. In Proceedings of the Intelligent Computing Systems, Merida, Mexico, 21–23 March 2018. [Google Scholar]
- Kim, J.H.; Whang, M.C.; Kim, Y.J.; Nam, K.C. A Study on Real Time Respiratory Rate Measurement System using PPG Sensor. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE01064050&language=en_US (accessed on 4 February 2020).
- Kim, J.; Whang, M.; Nam, K. PPG Filtering Method for Respiration Measurement in U-Health Care System. J. Ergon. Soc. Korea 2008, 27, 95–101. [Google Scholar]
- Lee, H.; Kim, D.K. Real-Time Mobile Emotional Content Player Using Smartphone Camera-Based PPG Measurement. Mob. Inf. Syst. 2019, 2019, 5820437. [Google Scholar] [CrossRef]
- Moon, K.D. Emotional Sensing Device—Requirements; Telecommunications Technology Associations: Seongnam, Korea, 2010. [Google Scholar]
- Acharya, U.R.; Joseph, K.P.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public. Health. 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.; Kim, B.; Noh, G.-J.; Yoo, S.K. A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal. Sensors 2019, 19, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A Review of Emotion Recognition Using Physiological Signals. Sensors 2018, 18, 2074. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, K.; Abe, E.; Kamata, K.; Nakayama, C.; Suzuki, Y.; Yamakawa, T.; Hiraoka, T.; Kano, M.; Sumi, Y.; Masuda, F.; et al. Heart rate variability-based driver drowsiness detection and its validation with EEG. IEEE Trans. Biomed. Eng. 2019, 66, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Szypulska, M.; Piotrowski, Z. Prediction of fatigue and sleep onset using HRV analysis. In Proceedings of the IEEE the 19th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Warsaw, Poland, 24–26 May 2012. [Google Scholar]
- Wen, W.; Liu, G.; Cheng, N.; Wei, J.; Shangguan, P.; Huang, W. Emotion Recognition Based on Multi-Variant Correlation of Physiological Signals. IEEE Trans. Affect. Comput. 2014, 5, 126–140. [Google Scholar] [CrossRef]
- Liu, J.; Meng, H.; Nandi, A.; Li, M. Emotion detection from EEG recordings. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016. [Google Scholar]
- Valenza, G.; Citi, L.; Lanata, A.; Scilingo, E.P.; Barbieri, R. Revealing Real-Time Emotional Responses: A Personalized Assessment based on Heartbeat Dynamics. Sci. Rep. 2014, 4, 4998. [Google Scholar] [CrossRef] [Green Version]
- Theekshana, D.; Yasitha, R.; Roshan, R.; Isuru, N. An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition Sensors. Sensors 2019, 19, 4495. [Google Scholar]
- Yin, Z.; Wang, Y.; Zhang, W.; Liu, L.; Zhang, J.; Han, F.; Jin, W. Physiological Feature Based Emotion Recognition via an Ensemble Deep Autoencoder with Parsimonious Structure. IFAC-PapersOnLine 2017, 50, 6940–6945. [Google Scholar] [CrossRef]
- Cho, Y.; Bianchi-Berthouze, N.; Julier, S.J. DeepBreath: Deep Learning of Breathing Patterns for Automatic Stress Recognition using Low-Cost Thermal Imaging in Unconstrained Settings. In Proceedings of the 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA, 23–26 October 2017. [Google Scholar]
- Matiko, J.; Beeby, S.; Tudor, J. Fuzzy logic based emotion classification. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014. [Google Scholar]
- Bahreini, K.; van der Vegt, W.; Westera, W. A fuzzy logic approach to reliable real-time recognition of facial emotions. Multimed. Tools Appl. 2019, 78, 18943–18966. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- MindMedia. Available online: https://www.mindmedia.com/en/products/sensors/pulse-hr-sensor/ (accessed on 12 February 2019).
- MindMedia. Available online: https://www.mindmedia.com/en/products/sensors/respiration-sensor/ (accessed on 12 February 2019).
- He, X.; Zhang, W. Emotion recognition by assisted learning with convolutional neural networks. Neurocomputing 2018, 291, 187–194. [Google Scholar] [CrossRef]
- Yin, Z.; Zhao, M.; Wang, Y.; Yang, J.; Zhang, J. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Meth. Programs Biomed. 2017, 140, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, W.; Lu, B. Emotion Recognition Using Multimodal Deep Learning. In Proceedings of the International Conference on Neural Information Processing, Kyoto, Japan, 16–21 October 2016. [Google Scholar]
- Mirmohamadsadeghi, L.; Yazdani, A.; Vesin, J. Using cardio-respiratory signals to recognize emotions elicited by watching music video clips. In Proceedings of the 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP), Montreal, QC, Canada, 21–23 September 2016. [Google Scholar]
- Zhang, J.; Chen, M.; Hu, S.; Cao, Y.; Kozma, R. PNN for EEG-based Emotion Recognition. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016. [Google Scholar]
Features | Description |
---|---|
LF | Power in low frequency range (0.04–0.15 Hz) |
HF | Power in high frequency range (0.15–0.4 Hz) |
LF/HF Ratio | LF/HF |
Time (s) | Six Emotions and Neutral State | Sampling Rate | Number of Participants | Number of Input Parameters | Total Amount |
---|---|---|---|---|---|
60 | 7 | 32 | 49 | 2 | 1,317,120 |
60 | 7 | 32 | 49 | 5 | 3,292,800 |
60 | 7 | 32 | 49 | 7 | 4,609,920 |
60 | 7 | 32 | 49 | 4 | 2,634,240 |
- | 11,854,080 |
Input Parameter | Number of Input Parameters | Model No. | Input Shape |
---|---|---|---|
RSP: Combination step (1) | 2 | CNN Model 1 | (2 1 1) |
HRV: Combination step (2) | 5 | CNN Model 2 | (5 1 1) |
RSP and HRV Frequency Domain: Combination step (3) | 5 | CNN Model 2 | (5 1 1) |
RSP and HRV TimeDomain: Combination step (4) | 4 | CNN Model 3 | (4 1 1) |
RSP and HRV:Combination step (5) | 7 | CNN Model 4 | (7 1 1) |
Input Parameter | RSP | HRV | RSP and HRV Frequency Domain | RSP and HRV Time Domain | RSP and HRV |
---|---|---|---|---|---|
Applied Model | CNN Model 1 | CNN Model 2 | CNN Model 2 | CNN Model 3 | CNN Model 4 |
Batch Size | 64 | 16 | 32 | 32 | 16 |
Learning Rate | 0.00001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Optimizer | Adam Optimizer | ||||
Cost Function | Cross Entropy |
- | Happiness | Fear | Surprise | Anger | Sadness | Disgust | Average |
---|---|---|---|---|---|---|---|
RSP (CNN Model 1) | 64.24 | 61.61 | 60.38 | 66.7 | 64.08 | 62.04 | 63.18 |
HRV (CNN Model 2) | 75.3 | 75.34 | 78.28 | 78.21 | 77.91 | 79.49 | 77.42 |
- | Happiness | Fear | Surprise | Anger | Sadness | Disgust | Average |
---|---|---|---|---|---|---|---|
RSP and HRV Frequency Domain (CNN Model 2) | 79.77 | 77.81 | 76.49 | 80.86 | 78.52 | 76.39 | 78.31 |
RSP and HRV Time Domain (CNN Model 3) | 75.83 | 75.75 | 76.31 | 79.74 | 72.9 | 75.59 | 76.02 |
RSP and HRV (CNN Model 4) | 93.69 | 95.83 | 93.08 | 95.57 | 94.11 | 91.82 | 94.02 |
- | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Standard Deviation | 1.4250 | 1.1121 | 0.9004 | 0.7414 | 0.6101 |
Proportion of Variance | 0.4061 | 0.2474 | 0.1621 | 0.1099 | 0.07445 |
Cumulative Proportion | 0.4061 | 0.6535 | 0.8165 | 0.9255 | 1.0000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Lee, J.-Y.; Kim, D.K. The Design of CNN Architectures for Optimal Six Basic Emotion Classification Using Multiple Physiological Signals. Sensors 2020, 20, 866. https://doi.org/10.3390/s20030866
Oh S, Lee J-Y, Kim DK. The Design of CNN Architectures for Optimal Six Basic Emotion Classification Using Multiple Physiological Signals. Sensors. 2020; 20(3):866. https://doi.org/10.3390/s20030866
Chicago/Turabian StyleOh, SeungJun, Jun-Young Lee, and Dong Keun Kim. 2020. "The Design of CNN Architectures for Optimal Six Basic Emotion Classification Using Multiple Physiological Signals" Sensors 20, no. 3: 866. https://doi.org/10.3390/s20030866
APA StyleOh, S., Lee, J. -Y., & Kim, D. K. (2020). The Design of CNN Architectures for Optimal Six Basic Emotion Classification Using Multiple Physiological Signals. Sensors, 20(3), 866. https://doi.org/10.3390/s20030866