Perylene Diimide-Based Fluorescent and Colorimetric Sensors for Environmental Detection
Abstract
:1. Introduction
2. PDI-Based Fluorescent Sensors for Environment Detection
2.1. Metal Ion Sensing
2.1.1. IB Group (Cu2+)
2.1.2. ⅡA Group (Ba2+) and ⅢA Group (Al3+)
2.1.3. ⅡB Group (Zn2+, Cd2+ and Hg2+)
2.1.4. ⅧB Group (Fe3+, Ni2+ and Pd2+)
2.2. Non-Metal Anion Sensing
2.2.1. Fluoride Ion (F−)
2.2.2. Perchlorate Ion (ClO4−)
2.2.3. Cyanide Ion (CN−)
2.2.4. Phosphate (PO4−)
2.3. Organic Pollutant Sensing
2.3.1. Hydrazine
2.3.2. Amines
2.3.3. Nitroaromatics
3. PDIs-Based Colorimetric Sensors for Environment Detection
4. PDI-Based Multi-Modal Optical Sensors for Environment Detection
5. Conclusion and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.; Gao, N.; Bunes, B.R.; Zang, L. Tunable Nanofibril Heterojunctions for Controlling Interfacial Charge Transfer in Chemiresistive Gas Sensors. J. Mater. Chem. C 2019, 7, 13709–13735. [Google Scholar] [CrossRef]
- Che, Y.K.; Zang, L. Enhanced Fluorescence Sensing of Amine Vapor Based on Ultrathin Nanofibers. Chem. Commun. 2009, 5106–5108. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Slattum, P.; Wang, C.Y.; Zang, L. Self-Assembly of Perylene Imide Molecules into 1D Nanostructures: Methods, Morphologies, and Applications. Chem. Rev. 2015, 115, 11967–11998. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Y.; Xu, W.; He, Q.G.; Cheng, J.G. Recent Progress in Thin Film Fluorescent Probe for Organic Amine Vapour. Sci. China Chem. 2016, 59, 3–15. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Tao, D.D.; Zhang, Q.; Zhang, P.; Guo, D.P.; Jiang, Y.B. Supramolecular Aggregates as Sensory Ensembles. Chem. Commun. 2016, 52, 12929–12939. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ji, X.F.; Li, Z.T.; Huang, F.H. Fluorescent Supramolecular Polymeric Materials. Adv. Mater. 2017, 29, 1606117. [Google Scholar] [CrossRef]
- He, X.R.; Liu, H.B.; Li, Y.L.; Wang, S.; Li, Y.J.; Wang, N.; Xiao, J.C.; Xu, X.H.; Zhu, D.B. Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(II) Ions. Adv. Mater. 2005, 17, 2811–2815. [Google Scholar] [CrossRef]
- Yan, L.W.; Yang, L.; Lan, J.B.; You, J.S. A New Perylene Diimide-Based Colorimetric and Fluorescent Sensor for Selective Detection of Cu2+ Cation. Sci. China Chem. 2009, 52, 518–522. [Google Scholar] [CrossRef]
- Singh, P.; Mittal, L.S.; Kumar, S.; Bhargava, G.; Kumar, S. Perylene Diimide Appended with 8-Hydroxyquinoline for Ratiometric Detection of Cu2+ Ions and Metal Displacement Driven “Turn on” Cyanide Sensing. J. Fluoresc. 2014, 24, 909–915. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Pandeeswar, M.; Govindaraju, T. Assembly Modulation of PDI Derivative as a Supramolecular Fluorescence Switching Probe for Detection of Cationic Surfactant and Metal Ions in Aqueous Media. ACS Appl. Mater. Interfaces 2014, 6, 21369–21379. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, K.; Bhargava, G.; Kumar, S. Self-Assembled Nanorods of Bay Functionalized Perylenediimide: Cu2+ Based ‘Turn-on’ Response for INH, Complementary NOR/OR and TRANSFER Logic Functions and Fluorosolvatochromism. J. Mater. Chem. C 2016, 4, 2488–2497. [Google Scholar] [CrossRef]
- Weißenstein, A.; Würthner, F. Metal Ion Templated Self-Assembly of Crown Ether Functionalized Perylene Bisimide Dyes. Chem. Commun. 2015, 51, 3415–3418. [Google Scholar] [CrossRef] [PubMed]
- Malkondu, S. A Highly Selective and Sensitive Perylenebisimide-Based Fluorescent PET Sensor for Al3+ Determination in ACN. Tetrahedron 2014, 70, 5580–5584. [Google Scholar] [CrossRef]
- Kundu, A.; Pitchaimani, J.; Madhu, V.; Sakthive, P.; Ganesamoorthy, R.; Anthony, S.P. Bay Functionalized Perylenediimide with Pyridine Positional Isomers: NIR Absorption and Selective Colorimetric/Fluorescent Sensing of Fe3+ and Al3+ Ions. J. Fluoresc. 2017, 27, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Zhang, N.; Zhou, J.; Chang, T.J.; Fang, C.L.; Shangguan, D.H. A Turn-on Fluorescent Sensor for Zinc and Cadmium Ions Based on Perylene Tetracarboxylic Diimide. Analyst 2013, 138, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.K.; Wang, K.R.; Wang, K.X.; Han, T.L.; Zhu, H.Y.; Rong, R.X.; Cao, Z.R.; Li, X.L. Fluorescent Enhancement Sensing of Cadmium (II) Ion Based on a Perylene Bisimide Derivative. Sens. Actuators B 2019, 297, 126802. [Google Scholar] [CrossRef]
- Che, Y.K.; Yang, X.M.; Zang, L. Ultraselective Fluorescent Sensing of Hg2+ through Metal Coordination Induced Molecular Aggregation. Chem. Commun. 2008, 12, 1413–1415. [Google Scholar] [CrossRef]
- Ruan, Y.B.; Li, A.F.; Zhao, J.S.; Shen, J.S.; Jiang, Y.B. Specific Hg2+-Mediated Pperylene Bisimide Aggregation for Highly Sensitive Detection of Cysteine. Chem. Commun. 2010, 46, 4938–4940. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.P.; Shellaiah, M.; Singh, A.; Raju, M.V.R.; Wu, Y.H.; Lin, H.C. Naked Eye and Fluorescent Detections of Hg2+ Ions and Cysteine via J-Aggregation and Deaggregation of a Perylene Bisimide Derivative. Sens. Actuators B 2014, 194, 229–237. [Google Scholar] [CrossRef]
- Elmas, Ş.N.K.; Yilmaz, I. A Turn off-on Fluorescent Chemosensor for Sequential Determination of Mercury and Biothiols. J. Fluoresc. 2018, 28, 1451–1458. [Google Scholar] [CrossRef]
- Grisci, G.; Mróz, W.; Catellani, M.; Kozma, E.; Galeotti, F. Off-On Fluorescence Response of a Cysteine–Based Perylene Diimide for Mercury Detection in Water. ChemistrySelect 2016, 1, 3033–3037. [Google Scholar] [CrossRef]
- Erdemira, S.; Kocyigita, O.; Karakurt, S. A New Perylene Bisimide-Armed Calix[4]-Aza-Crown as “Turn on” Fluorescent Sensor for Hg2+ Ion and its Application to Living Cells. Sens. Actuators B 2015, 220, 381–388. [Google Scholar] [CrossRef]
- Malkondu, S.; Erdemir, S. A Novel Perylene-Bisimide Dye as “Turn on” Fluorescent Sensor for Hg2+ Ion Found in DMF/H2O. Dyes Pigm. 2015, 113, 763–769. [Google Scholar] [CrossRef]
- Feng, L.H.; Chen, Z.B. Screening Mercury (II) with Selective Fluorescent Chemosensor. Sens. Actuators B 2007, 122, 600–604. [Google Scholar] [CrossRef]
- Georgiev, N.I.; Sakr, A.R.; Bojinov, V.B. Design and Synthesis of Novel Fluorescence Sensing Perylene Diimides Based on Photoinduced Electron Transfer. Dyes Pigm. 2011, 91, 332–339. [Google Scholar] [CrossRef]
- Marcia, M.; Singh, P.; Hauke, F.; Magginic, M.; Hirsch, A. Novel EDTA-Ligands Containing an Integral Perylene Bisimide (PBI) Core as an Optical Reporter Unit. Org. Biomol. Chem. 2014, 12, 7045–7058. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.B.; Zhu, C.H.; Liu, X.Q.; Chen, B.; Zhang, Y.Y.; Xue, J.P.; Liu, J.Y. A Highly Selective and Turn-on Fluorescent Probe for Fe3+ Ion Based on Perylene Tetracarboxylic Diimide. Chin. J. Chem. 2014, 32, 1116–1120. [Google Scholar] [CrossRef]
- Wang, H.X.; Wang, D.L.; Wang, Q.; Li, X.Y.; Schalley, C.A. Nickel(II) and Iron(III)Selective Off-On-Type Fluorescence Probes Based on Perylene Tetracarboxylic Diimide. Org. Biomol. Chem. 2010, 8, 1017–1026. [Google Scholar] [CrossRef]
- Wang, H.X.; Lang, Y.H.; Wang, H.X.; Lou, J.J.; Guo, H.M.; Li, X.Y. Perylene Diimide Based ‘Turn-on’ Fluorescence Sensor for Detection of Pd2+ in Mixed Aqueous Media. Tetrahedron 2014, 70, 1997–2002. [Google Scholar] [CrossRef]
- Singh, P.; Mittal, L.S.; Vanita, V.; Kumar, K.; Walia, A.; Bhargava, G.; Kumar, S. Self-Assembled Vesicle and Rod-Like Aggregates of Functionalized Perylene Diimide: Reaction-Based Near-IR Intracellular Fluorescent Probe for Selective Detection of Palladium. J. Mater. Chem. B 2016, 4, 3750–3759. [Google Scholar] [CrossRef]
- Kumar, K.; Bhargava, G.; Kumar, S.; Singh, P. Controllable Supramolecular Self-Assemblies (Rods–Wires–Spheres) and ICT/PET Based Perylene Probes for Palladium Detection in Solution and the Solid State. New J. Chem. 2018, 42, 1010–1020. [Google Scholar] [CrossRef]
- Zhang, X.; Rehm, S.; Safont-Sempere, M.M.; Würthner, F. Vesicular Perylene Dye Nanocapsules as Supramolecular Fluorescent pH Sensor Systems. Nat. Chem. 2009, 1, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Aigner, D.; Dmitriev, R.I.; Borisov, S.M.; Papkovsky, D.B.; Klimant, I. pH-Sensitive Perylene Bisimide Probes for Live Cell Fluorescence Lifetime Imaging. J. Mater. Chem. B 2014, 2, 6792–6801. [Google Scholar] [CrossRef]
- Zhang, W.; Gan, S.Y.; Li, F.H.; Han, D.X.; Zhang, Q.X.; Niu, L. pH Responding Reversible Supramolecular Self-Assembly of Water-Soluble Amino-Imidazole-Armed Perylene Diimide Dye for Biological Applications. RSC Adv. 2015, 5, 2207–2212. [Google Scholar] [CrossRef]
- Ma, Y.S.; Zhang, F.X.; Zhang, J.F.; Jiang, T.Y.; Li, X.M.; Wu, J.S.; Ren, H.X. A Water-Soluble Fluorescent pH Probe Based on Perylene Dyes and its Application to Cell Imaging. Luminescence 2016, 31, 102–107. [Google Scholar] [CrossRef]
- Pacheco-Liñán, P.J.; Moral, M.; Nueda, M.L.; Cruz-Sánchez, R.; Fernández-Sainz, J.; Garzón-Ruiz, A.; Bravo, I.; Melguizo, M.; Laborda, J.; Albaladejo, J. Study on the pH Dependence of the Photophysical Properties of a Functionalized Perylene Bisimide and Its Potential Applications as a Fluorescence Lifetime Based pH Probe. J. Phys. Chem. C 2017, 121, 24786–24797. [Google Scholar] [CrossRef]
- Georgiev, N.I.; Said, A.I.; Toshkova, R.A.; Tzoneva, R.D.; Bojinov, V.B. A Novel Water-Soluble Perylenetetracarboxylic Diimide as a Fluorescent pH Probe: Chemosensing, Biocompatibility and Cell Imaging. Dyes Pigm. 2019, 160, 28–36. [Google Scholar] [CrossRef]
- Ye, F.; Liang, X.M.; Wu, N.; Li, P.; Chai, Q.; Fu, Y. A New Perylene-Based Fluorescent pH Chemosensor for Strongly Acidic Condition. Spectrochim. Acta Part A 2019, 216, 359–364. [Google Scholar] [CrossRef]
- Du, F.F.; Bao, Y.Y.; Liu, B.; Tian, J.; Li, Q.B.; Bai, R.K. POSS-Containing Red Fluorescent Nanoparticles for Rapid Detection of Aqueous Fluoride Ions. Chem. Commun. 2013, 49, 4631–4633. [Google Scholar] [CrossRef]
- Singh, P.; Mittal, L.S.; Vanita, V.; Kumar, R.; Bhargava, G.; Walia, A.; Kumar, S. Bay Functionalized Perylenediimide as a Deaggregation Based Intracellular Fluorescent Probe for Perchlorate. Chem. Commun. 2014, 50, 13994–13997. [Google Scholar] [CrossRef]
- Ajayakumar, M.R.; Mukhopadhyay, P.; Yadav, S.; Ghosh, S. Single-Electron Transfer Driven Cyanide Sensing: A New Multimodal Approach. Org. Lett. 2010, 12, 2646–2649. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.W.; Ye, Z.B.; Peng, C.X.; Zhang, S.H. A New Perylene Diimide-Based Fluorescent Chemosensor for Selective Detection of ATP in Aqueous Solution. Tetrahedron 2012, 68, 2725–2727. [Google Scholar] [CrossRef]
- Feng, X.L.; An, Y.X.; Yao, Z.Y.; Li, C.; Shi, G.Q. A Turn-on Fluorescent Sensor for Pyrophosphate Based on the Disassembly of Cu2+-Mediated Perylene Diimide Aggregates. ACS Appl. Mater. Interfaces 2012, 4, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Muthuraj, B.; Mukherjee, S.; Chowdhury, S.R.; Patra, C.R.; Iyer, P.K. An Efficient Strategy to Assemble Water Soluble Histidine-Perylene Diimide and Graphene Oxide for the Detection of PPi in Physiological Conditions and in Vitro. Biosens. Bioelectron. 2017, 89, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Sukul, P.K. Selective Detection of Pyrophosphate Anions in Aqueous Medium Using Aggregation of Perylene Diimide as a Fluorescent Probe. ACS Omega 2019, 4, 16191–16200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.B.; Liu, W.X.; Liu, Y.H.; Suo, Z.G.; Feng, L.Y.; Xing, F.F.; Zhu, S.R. Fluorescent Perylene Derivative Functionalized Titanium Oxide Gel for Sensitive and Portable Ascorbic Acid Detection. RSC Adv. 2019, 9, 24638–24645. [Google Scholar] [CrossRef] [Green Version]
- El-Sheshtawy, H.S.; El-Refaey, A.; El-Khouly, M.E. Supramolecular Off-On-Off Fluorescent Biosensor for Total Free Thyroid Hormones Detection Based on their Differential Binding with Cucurbit[7]uril to Fluorescent Perylene Derivative. J. Photochem. Photobiol. A 2019, 382, 111945. [Google Scholar] [CrossRef]
- Yu, L.; Liu, H.L.; Liu, X.Q.; Wang, J.M.; Xu, J.; Wang, H.L.; Hou, W.L.; Zhang, H.Q. Multiple Detection for Hydrazine Based on Reduction of the 1,6,7,12-Tetrachloroperylene Diimide Derivative. Chem. Pap. 2018, 72, 1927–1933. [Google Scholar] [CrossRef]
- Yu, B.; Ma, J.J.; Zhang, Y.J.; Zou, G.; Zhang, Q.J. Selectively Detecting Trace Picric Acid by Reduced Perylene Bisimide with POSS Substituents and their Nanoaggregates. RSC Adv. 2015, 5, 29262–29265. [Google Scholar] [CrossRef]
- Lathiotakis, N.N.; Kerkines, I.S.K.; Theodorakopoulos, G.; Petsalakis, I.D. Theoretical Study on Perylene Derivatives as Fluorescent Sensors for Amines. Chem. Phys. Lett. 2018, 691, 388–393. [Google Scholar] [CrossRef]
- Sriramulu, D.; Valiyaveettil, S. Perylene Derivatives as a Fluorescent Probe for Sensing of Amines in Solution. Dyes Pigm. 2016, 134, 306–314. [Google Scholar] [CrossRef]
- Bettini, S.; Syrgiannis, Z.; Pagano, R.; D̵ord̵ević, L.; Salvatore, L.; Prato, M.; Giancane, G.; Valli, L. Perylene Bisimide Aggregates as Probes for Subnanomolar Discrimination of Aromatic Biogenic Amines. ACS Appl. Mater. Interfaces 2019, 11, 17079–17089. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, P.S.; Pitchaimani, J.; Madhu, V.; Anthony, S.P. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range. J. Fluoresc. 2016, 26, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.M.; Chen, G.F.; Zhang, C.; Ma, L.Z.; Zhang, W.Y.; Xia, H.Y. A Superacid-Catalyzed Synthesis of Fluorescent Covalent Triazine Based Framework Containing Perylene Tetraanhydride Bisimide for Sensing to o-Nitrophenol with Ultrahigh Sensitivity. J. Macromol. Sci. Part A Pure Appl. Chem. 2019, 56, 1004–1011. [Google Scholar] [CrossRef]
- Pfeifer, D.; Klimant, I.; Borisov, S.M. Ultrabright Red-Emitting Photostable Perylene Bisimide Dyes: New Indicators for Ratiometric Sensing of High pH or Carbon Dioxide. Chem. Eur. J. 2018, 24, 10711–10720. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.R.; Yang, Z.B.; Li, X.L. High Excimer-State Emission of Perylene Bisimides and Recognition of Latent Fingerprints. Chem. Eur. J. 2015, 21, 5680–5684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, L.M.; Zhang, G.J.; Yu, J.J.; Cai, X.F.; Teng, M.S.; Wu, Y. A Highly Sensitive and Selective Colorimetric Chemosensor for F− Detection Based on Perylene-3,4:9,10-tetracarboxylic Bisimide. Chin. J. Chem. 2012, 30, 2823–2826. [Google Scholar] [CrossRef]
- Chen, Z.J.; Wang, L.M.; Zou, G.; Zhang, L.; Zhang, G.J.; Cai, X.F.; Teng, M.S. Colorimetric and Ratiometric Fluorescent Chemosensor for Fluoride Ion Based on Perylene Diimide Derivatives. Dyes Pigm. 2012, 94, 410–415. [Google Scholar] [CrossRef]
- Maeda, T.; Würthner, F. Halochromic and Hydrochromic Squaric Acid Functionalized Perylene Bisimide. Chem. Commun. 2015, 51, 7661–7664. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.M.; Sun, L.F.; Ding, Y.N.; Shi, Z.Q.; Liu, Q.Y. N,N’-Di-Carboxymethyl Perylene Diimide Functionalized Magnetic Nanocomposites with Enhanced Peroxidase-Like Activity for Colorimetric Sensing of H2O2 and Glucose. New J. Chem. 2017, 41, 5853–5862. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, L.; Zhang, G.J.; Wu, Y.; Wu, S.Y.; Yu, J.J.; Wang, L.M. A New Colorimetric and Fluorescent Bifunctional Probe for Cu2+ and F− Ions Based on Perylene Bisimide Derivatives. Tetrahedron Lett. 2014, 55, 3218–3222. [Google Scholar] [CrossRef]
- Kumar, K.; Kaur, S.; Kaur, S.; Bhargava, G.; Kumar, S.; Singh, P. Perylene Diimide–Cu2+ Based Fluorescent Nanoparticles for The Detection of Spermine in Clinical and Food Samples: a Step toward The Development of a Ddiagnostic Kit as a POCT Tool for Spermine. J. Mater. Chem. B 2019, 7, 7218–7227. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, X.Y. Semiconducting Perylene Diimide Nanostructure: Multifunctional Phototheranostic Nanoplatform. Acc. Chem. Res. 2019, 52, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.D.; Cheng, W.Y.; Yuan, Q.P.; Müllen, K.; Yin, M.Z. From Dyestuff Chemistry to Cancer Theranostics: The Rise of Rylenecarboximides. Acc. Chem. Res. 2019, 52, 2266–2277. [Google Scholar] [CrossRef] [PubMed]
PDIs | Basic Sensing Principles | Sensor Signals | Conc. of PDIs (µM) | Testing Solutions (v/v) | Targeted Analytes | LDR (µM) | LDL (µM) | Ref. |
---|---|---|---|---|---|---|---|---|
PDI-1-Au NPs | metal coordination | FL off-on | 1.0 | CHCl3/CAN (9/1) | Cu2+ | 0–100 | 1.0 | [7] |
PDI-2 | metal coordination | color change, FL on-off | 10 | H2O/THF (7/3) | Cu2+ | 0–100 | - | [8] |
PDI-3 | metal coordination | color change | 10 | CHCl3 | Cu2+ | 0–100 | 0.50 | [9] |
FL on-off | 0–100 | 1.0 | ||||||
PDI-3-Cu2+ | metal coordination | color change | 10 | CHCl3 | CN− | 0–100 | 10 | |
FL off-on | 0–100 | 8.0 | ||||||
PDI-4 | host–guest-driven aggregation-deaggregation | FL on-off | 3.5 | aqueous CTAB microemulsion | Fe3+, Cu2+ | 0–21, 0–7.0 | - | [10] |
PDI-5 | metal coordination | color change, FL off-on | 0.050 | ACN | Cu2+ | 0–10 | 0.020 | [11] |
PDI-6 | metal-crown ether- induced aggregation | FL on-off | 11 | ACN | Ba2+ | 0–74.8 | - | [12] |
PDI-7 | metal coordination | FL off-on | 1.0 | ACN | Al3+ | 0–5.0 | 0.33 | [13] |
PDI-8 | Lewis acidic protonation | color change, FL on-off | mM | DMF | Fe3+, Al3+ | µM–mM | µM | [14] |
PDI-9 | metal coordination | FL off-on | 1.0 | ACN/HEPES buffer (1/1) | Zn2+ (pH 6.0–7.0) | 0.1–4.0 | 0.032 | [15] |
Cd2+ (pH 9.0) | 0.1–5.0 | 0.048 | ||||||
PDI-10 | metal coordination | FL off-on | 10 | Tris-HCl buffer, pH 7.3 | Cd2+ | 0–600 | 0.52 | [16] |
PDI-11 | metal coordination | FL on-off | 0.10 | DMF/H2O (7/3) | Hg2+ | 0–1.0 | 0.0050 | [17] |
PDI-Hg2+ | thymine-Hg2+ complexation | FL off-on | 0.33 | DMF/H2O (9/1) | cysteine | 0.05–0.3 | 0.0096 | [18] |
PDI-12 | J-aggregation | color change, FL on-off | 1.0 | THF/H2O (2/1) | Hg2+ | 0.1–2.0 | 0.037 | [19] |
deaggregation | color change, FL off-on | cysteine | 0.091 | |||||
PDI-13 | metal coordination | FL on-off | 50 | DMSO/HEPES buffer (1/19), pH = 7.4 | Hg2+ | 0–250 | 0.0060 | [20] |
PDI-13-Hg2+ | thymine-Hg2+-induced deaggregation | FL off-on | biothiols (Cys, Hcy, GSH) | 0–400 | 0.0015, 0.0083, 0.0011 | |||
PDI-14 | thymine-Hg2+-induced deaggregation | FL off-on | 30 | pure water | Hg2+ | 0–30 | 0.10 | [21] |
PDI-15 | metal coordination | FL off-on | 2.0 | DMF/H2O (19/1), pH = 5.5–7.5 | Hg2+ | 0–200 | 0.56 | [22] |
PDI-16 | metal coordination | FL off-on | 20 | DMF/H2O (19/1) | Hg2+ | 0–1000 | 2.2 | [23] |
PDI-17 | metal coordination | FL off-on at 365 nm FL on-off at 557 nm | 5.0 | DMSO/Na2HPO4 buffer (1/1), pH 7.0 | Hg2+ | 1.0–20 | 0.010 | [24] |
PDI-18 | metal-tetraester coordination | FL off-on (FE 184) | 2.0 | DMF/H2O (1/1), pH 2–10 | Fe3+ | 1.0 | - | [25] |
PDI-19 | metal-polyamidoamine coordination | FL off-on (FE 6.4) | ||||||
PDI-20 | metal-EDTA coordination | FL off-on (FE 1.83) | 5.0 | DMSO/H2O (1/1) | Fe3+ | 50 | - | [26] |
FL off-on (FE 1.18) | Al3+ | |||||||
PDI-21 | metal-DTA coordination | FL off-on (FE ~7) | 2.0 | ACN/H2O (1/1) | Fe3+ | 18 | - | [27] |
PDI-22 | metal-DPA coordination | FL off-on (FE 49) | 6.0 | DMF | Ni2+ | 84 | - | [28] |
PDI-23 | metal-EDPA coordination | FL off-on (FE 138) | 5.0 | Fe3+ | 20 | - | ||
PDI-24 | metal coordination | FL off-on | 5.0 | DMF/H2O (7/1)pH 2 (HCl)–10 (NaOH) | Pd2+ | 0-15 ppm | 0.0073 | [29] |
PDI-25 | depropargylation reaction | NIR color change, FL on-off at λem 630 nm | 10 | DMSO/HEPES buffer (1/9), pH 7.3 | Pd0 | μM | 0.0066 | [30] |
NIR color change, FL on-off at λem 564 nm | THF/HEPES buffer (1/1), pH 7.3 | 0.021 | ||||||
PDI-26 | Tsuji–Trost allylic oxidation and decarboxylation | NIR color change | 1.0 | DMSO/HEPES buffer (1/1), pH = 7.2 | Pd0 | 0–40 | 0.039 | [31] |
FL on-off | 0–90 | 0.045 | ||||||
PDI-27 | F−inducded hydrolyzation of POSS nanocages | FL on-off | 30 | pure water | F− | 0–1000 | 10 | [39] |
PDI-28 | ion complexation | FL on-off | 10 | DMSO/HEPES buffer (1/9), pH = 7.4 | ClO4− | 0–70 | 0.060 | [40] |
PDI-29 | SOMO-LUMO-based eT | color change, FL on-off | 0.15 | THF | CN− | 0.2–3.5 | 0.20 | [41] |
PDI-30 | Zn2+-PO4− complexation | FL off-on | 10 | HEPES buffer. pH 7.4 | ATP | 0–20 | - | [42] |
PDI-31 | Cu2+-PO4− complexation | FL off-on | 5.0 | HEPES buffer, pH 7.4 | PPi | 0.1–30 | 0.20 | [43] |
PCG | PDI-32+GO+Cu2+ | FL off-on | 0.33 | HEPES buffer, pH 7.4 | PPi | 0–0.33 | 0.060 | [44] |
PDI-33 | Cu2+-PO4−complexation | color change, FL off-on | 10 | HEPES buffer, pH = 7.4 | PPi | 40–100 | 0.11 | [45] |
PDI-34 | reduction reaction | color change | 10 | DMF | hydrazine | 0.32–2.90 nmol | 0.87 nmol | [48] |
FL off-on | 0.65–3.57 nmol | |||||||
PMI | intermolecular electron transfer | FL on-off | 0.10 | THF | amines | 100–106 | - | [51] |
PDI-35 | ||||||||
PDI-36 | amine-intercalated disaggregation | FL off-on | 40 | deionized water, pH ≈ 8 | bioamines | 10−4–100 | 10−5 | [52] |
intermolecular electron transfer | FL on-off | bioamines | ||||||
PDI-37 | H-bonding-induced aggregation | FL on-off | μM | DMF; aqueous solutions, pH 1.0–10.0 | 4-NA, PA | 0.1–1.0 | up to 1.0 | [53] |
PDI-38 | H-bonding-induced aggregation | FL on-off | 1.7 × 103 | CHCl3 | o-NP | 0–750 | 1.7 × 10−5 | [54] |
PDP (reduced PDI-39) | H-bonding-induced aggregation | color change, FL on-off | 1.5 | THF | PA | 0–18 | - | [49] |
PDI-40 | Si-O bond cleavage | color change | 50 | THF | F− | 0–10 | - | [57] |
PDI-41 | intermolecular proton transfer | color change, FL on-off | 10 | DCM | F− | 0–120 | 0.14 | [58] |
PDI-42 | protonation/deprotonation | color change | - | THF/H2O | pH; humidity | - | - | [59] |
PDI-43-Fe3O4 NPs | peroxidase substrate binding | color change | - | aqueous solutions | H2O2 | 7.0–100 | 2.0 | [60] |
glucose | 3.0–100 | 1.1 | ||||||
PDI-44 | metal coordination | rose red to purple, FL on-off | 10 | THF/MOPS buffer (4/1), pH = 7.2 | Cu2+ | 0–10 | 0.17 | [61] |
intermolecular proton transfer | rose red to light green, FL on-off | 10 | THF | F− | 0–15 | Up to 22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Xue, Z.; Gao, N.; Yang, X.; Zang, L. Perylene Diimide-Based Fluorescent and Colorimetric Sensors for Environmental Detection. Sensors 2020, 20, 917. https://doi.org/10.3390/s20030917
Chen S, Xue Z, Gao N, Yang X, Zang L. Perylene Diimide-Based Fluorescent and Colorimetric Sensors for Environmental Detection. Sensors. 2020; 20(3):917. https://doi.org/10.3390/s20030917
Chicago/Turabian StyleChen, Shuai, Zexu Xue, Nan Gao, Xiaomei Yang, and Ling Zang. 2020. "Perylene Diimide-Based Fluorescent and Colorimetric Sensors for Environmental Detection" Sensors 20, no. 3: 917. https://doi.org/10.3390/s20030917
APA StyleChen, S., Xue, Z., Gao, N., Yang, X., & Zang, L. (2020). Perylene Diimide-Based Fluorescent and Colorimetric Sensors for Environmental Detection. Sensors, 20(3), 917. https://doi.org/10.3390/s20030917