A Novel LiDAR Data Classification Algorithm Combined CapsNet with ResNet
Abstract
:1. Introduction
- (1)
- Combine the CapsNet and ResNet to form a new network framework named ResCapNet. The input features are extracted using ResNet and the outputs of ResNet are sent to CapsNet for further classification.
- (2)
- The proposed method is tested on two different LiDAR data sets to predict for each pixel the land type associated with that pixel while the number of training samples is limited.
2. Capsule Network
2.1. Layer-Based Compression
2.2. Dynamic Routing
Algorithm 1 Dynamic Routing |
Routing (, , ) |
for all capsule in layer and in layer : |
for iterations do |
for all capsule in layer : |
for all capsule in layer : |
for all capsule in layer : |
for all capsule in layer and in layer : |
return |
3. Residual Network
4. ResCapNet for LiDAR Classification
4.1. Proposed Network Structure
4.2. Adaptive Learning Optimization Algorithm
4.3. Loss and Activate Function
5. Experimental Results and Analysis
5.1. Algorithm Data Description
5.2. Experimental Setup
5.3. Experimental Results and Aanlysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, L.J.; Li, Q.; Wang, Z.Z.; Liu, H.J.; Li, Z.S.; Gui, Y.; Kletzli, R.; Yang, X.; Chen, S.; Liu, Y. Lidar Application in Selection and Design of Power Line Route. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 3109–3111. [Google Scholar]
- Gao, J.; Sun, J.F.; Wei, J.S.; Wang, Q. Research of Underwater Target Detection Using a Slit Streak Tube Imaging Lidar. In Proceedings of the 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology, Harbin, China, 12–16 October 2011; pp. 240–243. [Google Scholar]
- Liu, J.K.; Shih, T.Y.; Liao, Z.Y.; Lau, C.C.; Hsu, P.H. The Geomorphometry of Rainfall-Induced Landslides in Alishan Area Obtained by Airborne Lidar and Digital Photography. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008. [Google Scholar]
- Zhang, X.Y.; Wang, S.P.; Yun, X.C. Bidirectional Active Learning: A Two-way Exploration into Unlabeled and Labeled Dataset. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) 2015, 26, 3034–3044. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Shi, H.C.; Li, C.S. Learning Transferable Self-Attentive Representations for Action Recognition in Untrimmed Videos with Weak Supervision. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Honolulu, HI, USA, 27 January–1 February 2019; pp. 1–8. [Google Scholar]
- Zhang, X.Y.; Li, C.S.; Shi, H.C.; Zhu, X.B.; Li, P.; Dong, J. AdapNet: Adaptability Decomposing Encoder-decoder Network for Weakly Supervised Action Recognition and Localization. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) 2020, 1–12. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Shi, H.C.; Zhu, X.B.; Li, P. Active Semi-Supervised Learning based on Self-Expressive Correlation with Generative Adversarial Networks. Neurocomputing 2019, 345, 103–113. [Google Scholar] [CrossRef]
- Lo, C.S.; Lin, C. Growth-competition-based Stem Diameter and Volume Modeling for Tree Level Forest Inventory Using Airborne LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2216–2226. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H. PointNet++: Deep Hierarchical Feature Learning on Points a Metric Space. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; pp. 5099–5108. [Google Scholar]
- Wang, A.L.; He, X.; Ghamisi, P.; Chen, Y.S. LiDAR Data Classification Using Morphological Profiles and Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 74–778. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, Y.; Hu, L.; Liu, Z. Study on Highway Geological Disasters Knowledge base for Remote Sensing Images Interpretation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Lodha, S.K.; Kreps, E.J.; Helmbold, D.P.; Fitzpatrick, D.N. Aerial LiDAR data classification using support vector machines (SVM). In Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), Chapel Hill, NC, USA, 14–16 June 2006. [Google Scholar]
- Sasaki, T.; Imanishi, J.; Ioki, K.; Morimoto, Y.; Kitada, K. Object-based Classification of Land Cover and Tree Species by integrating airborne LiDAR and high spatial resolution imagery data. Landsc. Ecol. Eng. 2012, 8, 157–171. [Google Scholar] [CrossRef]
- Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of Savanna Tree Species, in the Greater Kruger National Park Region, by Integrating Hyperspectral and LiDAR Data in a Random Forest Data Mining Environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [Google Scholar] [CrossRef]
- Khodadadzadeh, M.; Li, J. Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2971–2983. [Google Scholar] [CrossRef]
- Ghamisi, P.; Höfle, B.; Zhu, X.X. Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 3011–3024. [Google Scholar] [CrossRef]
- Ghamisi, P.; Hofle, B. LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support Vector Machine. IEEE Geosci. Remote Sens. Lett. 2017, 14, 659–663. [Google Scholar] [CrossRef]
- He, X.; Wang, A.L.; Ghamisi, P.; Li, G.; Chen, Y.S. LiDAR Data Classification Using Spatial Transformation and CNN. IEEE Geosci. Remote Sens. Lett. 2018, 16, 125–129. [Google Scholar] [CrossRef]
- Xia, J.S.; Yokoya, N.T.; Iwasaki, A. Fusion of Hyperspectral and LiDAR Data with a Novel Ensemble Classifier. IEEE Geosci. Remote Sens. Lett. 2018, 15, 957–961. [Google Scholar] [CrossRef]
- Ge, C.; Du, Q.; Li, W.; Li, Y.S.; Sun, W.W. Hyperspectral and LiDAR Data Classification Using Kernel Collaborative Representation Based Residual Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1963–1973. [Google Scholar] [CrossRef]
- Wang, A.L.; Wang, M.H.; Jiang, K.Y.; Zhao, L.F.; Iwahori, Y.J. A Novel Lidar Data Classification Algorithm Combined Densenet with STN. In Proceedings of the 2019 International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 2483–2486. [Google Scholar]
- Wang, A.L.; Wang, M.H.; Jiang, K.Y.; Cao, M.Q.; Iwahori, Y.J. A Dual Neural Architecture Combined SqueezeNet with OctConv for LiDAR Data Classification. Sensors 2019, 19, 4927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Hiratsuka, S.; Ohta, M.; Matsubara, H.; Ogawa, M. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle. Sensors 2018, 18, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.K.; Jung, H.S.; Baek, W.K.; Kim, D. Classification of Forest Vertical Structure in South Korea from Aerial Orthophoto and Lidar Data Using an Artificial Neural Network. Appl. Sci. 2017, 7, 1046. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Qu, C.; Li, J.; Peng, S. A Lightweight Convolutional Neural Network Based on Visual Attention for SAR Image Target Classification. Sensors 2018, 18, 3039. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Huang, T.; Wang, J.; Sun, J.; Hussain, A.; Yang, E. Dual-Branch Deep Convolution Neural Network for Polarimetric SAR Image Classification. Appl. Sci. 2017, 7, 447. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Lim, S.; Jia, X. Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning. Remote Sens. 2018, 10, 299. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.B.; Li, Z.Z.; Zhang, X.Y.; Li, P. Deep Convolutional Representations and Kernel Extreme Learning Machines for Image Classification. Multimed. Tools Appl. (MTA) 2018, 78, 29271–29290. [Google Scholar] [CrossRef]
- Jiang, Y.G.; Wu, Z.X.; Tang, J.H.; Li, Z.C.; Xue, X.Y.; Chang, S.H. Modeling Multimodal Clues in a Hybrid Deep Learning Framework for Video Classification. IEEE Trans. Multimed. (TMM) 2018, 78, 3137–3147. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.G.; Wu, Z.X.; Wang, J.; Xue, X.Y.; Chang, S.H. Exploiting Feature and Class Relationships in Video Categorization with Regularized Deep Neural Network. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 2018, 40, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhao, P.; Gao, X.; Liu, Y. Robust Cost-sensitive Learning for Recommendation with Implicit Feedback. In Proceedings of the 2018 SIAM International Conference on Data Mining, San Diego, CA, USA, 3–5 May 2018; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2018; pp. 621–629. [Google Scholar]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; pp. 3856–3866. [Google Scholar]
- Wang, X.; Tan, K.; Chen, Y. CapsNet and Triple-GANs Towards Hyperspectral Classification. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018. [Google Scholar]
- Ahmad, A.; Kakillioglu, B.; Velipasalar, S. 3D Capsule Networks for Object Classification from 3D Model Data. In Proceedings of the 2018 Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 2225–2229. [Google Scholar]
- Zhu, K.Q.; Chen, Y.S.; Ghamisi, P.; Jia, X.P.; Benediktsson, J.A. Deep Convolutional Capsule Network for Hyperspectral Image Spectral and Spectral-Spatial Classification. Remote Sens. 2019, 11, 223. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Beltran, R.F.; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2145–2160. [Google Scholar] [CrossRef]
- Afshar, P.; Plataniotis, K.N.; Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1368–1372. [Google Scholar]
- Yin, J.H.; Li, S.; Zhu, H.M.; Luo, X.Y. Hyperspectral Image Classification Using CapsNet with Well-Initialized Shallow Layers. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1095–1099. [Google Scholar] [CrossRef]
- Wang, X.; Tan, K.; Du, Q.; Chen, Y.; Du, P. Caps-TripleGAN: GAN-Assisted CapsNet for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7232–7245. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Mou, L.C.; Ghamisi, P.; Zhu, X.X. Unsupervised Spectral–Spatial Feature Learning via Deep Residual Conv–Deconv Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.L.; Li, J.; Luo, Z.M.; Chapman, M. Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [Google Scholar] [CrossRef]
- Qina, F.W.; Gaoa, N.; Penga, Y.; Wub, Z.Z.; Shenc, S.Y.; Grudtsina, A. Fine-grained Leukocyte Classification with Deep Residual Learning for Microscopic Images. Comput. Methods Programs Biomed. 2018, 162, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, M.E.; Haut, J.M.; Beltran, R.F.; Plaza, J.; Pla, F. Deep Pyramidal Residual Networks for Spectral–Spatial Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 740–754. [Google Scholar] [CrossRef]
- Zhang, J.P.; Xie, Y.T.; Xia, Y.; Shen, C.H. Attention Residual Learning for Skin Lesion Classification. IEEE Trans. Med. Imaging 2019, 38, 2092–2103. [Google Scholar] [CrossRef] [PubMed]
NO. | Conv | ReLU | Pool | Stride |
---|---|---|---|---|
1 | 3 × 3 × 1 × 20 | Yes | 2 × 2 | 1 |
2 | 3 × 3 × 20 × 20 | Yes | 2 ×2 | 1 |
Training Samples | Index | 400 | 500 | 600 | 700 | |
---|---|---|---|---|---|---|
Methods | ||||||
Decision Tree | OA% | 76.84 ± 0.51 | 76.46 ± 0.71 | 76.66 ± 1.53 | 76.85 ± 1.55 | |
AA% | 71.24 ± 1.43 | 71.80 ± 2.31 | 72.04 ± 2.29 | 72.23 ± 3.14 | ||
K×100 | 68.04 ± 1.69 | 68.35 ± 1.21 | 67.71 ± 2.11 | 69.73 ± 0.60 | ||
SVM | OA% | 72.48 ± 2.12 | 76.79 ± 0.31 | 76.91 ± 2.01 | 77.21 ± 0.88 | |
AA% | 76.87 ± 1.42 | 78.59 ± 1.97 | 78.85 ± 1.15 | 81.19 ± 2.31 | ||
K×100 | 67.32 ± 1.69 | 68.39 ± 1.04 | 68.82 ± 1.67 | 69.81 ± 2.33 | ||
KNN | OA% | 79.51 ± 0.27 | 81.90 ± 0.38 | 85.25 ± 0.19 | 86.06 ± 0.77 | |
AA% | 81.35 ± 0.16 | 83.42 ± 0.06 | 84.92 ± 0.82 | 87.47 ± 0.37 | ||
K×100 | 73.80 ± 0.22 | 76.49 ± 0.37 | 79.94 ± 0.35 | 81.95 ± 0.36 | ||
Random Forest | OA% | 86.78 ± 0.40 | 87.75 ± 0.31 | 88.16 ± 0.44 | 90.43 ± 0.67 | |
AA% | 88.75 ± 1.74 | 89.20 ± 0.17 | 89.33 ± 0.48 | 89.95 ± 0.95 | ||
K×100 | 82.33 ± 0.62 | 83.61 ± 0.38 | 84.06 ± 0.59 | 86.57 ± 0.87 | ||
CNN | OA% | 87.35 ± 1.91 | 87.91 ± 1.16 | 88.33 ± 0.73 | 90.61 ± 1.89 | |
AA% | 88.90 ± 1.03 | 89.63 ± 2.71 | 89.51 ± 2.04 | 90.23 ± 0.68 | ||
K×100 | 82.72 ± 1.67 | 85.02 ± 1.85 | 86.03 ± 1.98 | 86.72 ± 2.34 | ||
CapsNet | OA% | 85.01 ± 1.47 | 87.05 ± 1.19 | 90.07 ± 1.18 | 90.11 ± 0.91 | |
AA% | 83.89 ± 2.13 | 87.78 ± 1.70 | 91.34 ± 1.24 | 91.64 ± 1.73 | ||
K×100 | 80.21 ± 1.81 | 82.85 ± 0.79 | 86.81 ± 1.45 | 86.92 ± 1.22 | ||
ResNet | OA% | 89.91 ± 2.07 | 91.57 ± 1.76 | 93.12 ± 1.51 | 94.79 ± 0.90 | |
AA% | 91.03 ± 1.88 | 93.23 ± 0.81 | 94.25 ± 1.06 | 95.78 ± 1.34 | ||
K×100 | 86.62 ± 1.99 | 88.84 ± 2.39 | 90.91 ± 2.07 | 93.53 ± 1.17 | ||
OctSqueezeNet | OA% | 91.99 ± 0.81 | 92.79 ± 0.41 | 94.09 ± 1.23 | 95.42 ± 0.91 | |
AA% | 93.21 ± 0.43 | 95.02 ± 0.90 | 95.75 ± 1.25 | 96.43 ± 1.37 | ||
K×100 | 89.48 ± 1.00 | 90.48 ± 0.47 | 92.23 ± 1.64 | 93.99 ± 1.97 | ||
ResCapNet | OA% | 93.05 ± 0.63 | 94.39 ± 0.57 | 94.87 ± 0.56 | 96.12 ± 0.51 | |
AA% | 94.36 ± 0.84 | 95.45 ± 0.79 | 96.03 ± 0.76 | 97.01 ± 1.09 | ||
K×100 | 90.77 ± 0.98 | 92.56 ± 0.53 | 93.22 ± 0.77 | 94.89 ± 1.14 |
Training Samples | Index | 400 | 500 | 600 | 700 | |
---|---|---|---|---|---|---|
Methods | ||||||
Decision Tree | OA% | 68.73 ± 1.22 | 73.08 ± 0.13 | 74.11 ± 0.28 | 76.30 ± 0.29 | |
AA% | 60.49 ± 2.02 | 64.28 ± 1.35 | 66.27 ± 0.62 | 68.58 ± 1.37 | ||
K×100 | 63.01 ± 1.40 | 68.10 ± 0.01 | 69.38 ± 0.32 | 70.06 ± 0.33 | ||
SVM | OA% | 72.48 ± 2.12 | 76.79 ± 0.31 | 76.91 ± 2.01 | 77.23 ± 0.88 | |
AA% | 76.87 ± 1.42 | 78.59 ± 1.97 | 78.85 ± 1.15 | 81.19 ± 2.31 | ||
K×100 | 67.32 ± 1.69 | 68.39 ± 1.04 | 68.82 ± 1.67 | 69.81 ± 2.33 | ||
KNN | OA% | 77.62 ± 0.82 | 84.73 ± 0.16 | 85.58 ± 0.03 | 88.36 ± 1.24 | |
AA% | 80.29 ± 0.98 | 85.78 ± 2.98 | 85.31 ± 0.40 | 89.27 ± 1.05 | ||
K×100 | 73.54 ± 0.76 | 80.29 ± 0.12 | 83.08 ± 0.08 | 86.29 ± 1.04 | ||
Random Forest | OA% | 85.17 ± 1.35 | 87.22 ± 0.83 | 88.79 ± 2.07 | 91.71 ± 1.02 | |
AA% | 88.19 ± 2.13 | 89.85 ± 3.06 | 90.01 ± 1.45 | 91.15 ± 1.43 | ||
K×100 | 82.16 ± 0.76 | 86.26 ± 1.57 | 86.54 ± 2.11 | 89.01 ± 1.22 | ||
CNN | OA% | 85.91 ± 1.33 | 88.51 ± 1.22 | 90.47 ± 0.62 | 92.48 ± 1.69 | |
AA% | 88.46 ± 2.36 | 90.36 ± 0.43 | 90.31 ± 1.04 | 92.07 ± 1.95 | ||
K×100 | 83.03 ± 1.51 | 87.08 ± 0.79 | 86.67 ± 0.77 | 89.96 ± 1.80 | ||
CapsNet | OA% | 81.17 ± 1.46 | 85.04 ± 1.73 | 87.02 ± 0.84 | 90.17 ± 1.18 | |
AA% | 82.75 ± 2.34 | 86.82 ± 1.44 | 87.62 ± 1.60 | 91.17 ± 1.87 | ||
K×100 | 77.43 ± 1.89 | 82.13 ± 1.02 | 84.56 ± 1.03 | 88.23 ± 1.43 | ||
ResNet | OA% | 90.53 ± 1.83 | 93.51 ± 1.39 | 95.43 ± 0.66 | 95.72 ± 0.95 | |
AA% | 88.70 ± 2.08 | 94.47 ± 1.13 | 94.28 ± 1.25 | 95.16 ± 1.75 | ||
K×100 | 88.77 ± 2.33 | 92.94 ± 1.68 | 94.92 ± 0.79 | 95.06 ± 1.14 | ||
OctSqueezeNet | OA% | 92.94 ± 0.21 | 93.75 ± 1.23 | 95.07 ± 0.48 | 95.91 ± 0.73 | |
AA% | 93.63 ± 0.17 | 93.72 ± 0.60 | 95.36 ± 1.15 | 95.89 ± 0.17 | ||
K×100 | 92.79 ± 0.74 | 93.79 ± 0.99 | 94.13 ± 0.63 | 95.13 ± 0.11 | ||
ResCapNet | OA% | 93.34 ± 1.22 | 94.21 ± 1.24 | 96.23 ± 0.98 | 96.39 ± 0.79 | |
AA% | 94.25 ± 0.81 | 95.27 ± 0.42 | 97.16 ± 1.05 | 97.31 ± 1.02 | ||
K×100 | 91.17 ± 0.80 | 93.10 ± 1.03 | 95.51 ± 0.88 | 95.70 ± 0.65 |
precision | Classes | ||||||||
Methods | |||||||||
Decision Tree | 0.59 | 0.52 | 0.83 | 0.76 | 0.88 | 0.81 | 0.62 | ||
SVM | 0.83 | 0.80 | 0.78 | 0.80 | 0.84 | 0.61 | 0.88 | ||
KNN | 0.98 | 0.77 | 0.97 | 0.82 | 0.99 | 0.70 | 0.70 | ||
Random Forest | 0.84 | 0.94 | 1.00 | 1.00 | 0.91 | 0.82 | 0.89 | ||
CNN | 0.99 | 0.87 | 0.87 | 0.94 | 1.00 | 0.78 | 0.87 | ||
CapsNet | 0.93 | 0.98 | 0.86 | 0.98 | 0.92 | 0.85 | 0.79 | ||
ResNet | 0.97 | 1.00 | 1.00 | 0.86 | 0.97 | 0.90 | 0.82 | ||
OctSqueezeNet | 1.00 | 0.99 | 0.98 | 0.92 | 0.99 | 0.87 | 0.89 | ||
ResCapNet | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | 0.96 | 0.93 | ||
recall | classes | ||||||||
methods | |||||||||
Decision Tree | 0.70 | 0.74 | 0.78 | 0.66 | 0.81 | 0.79 | 0.72 | ||
SVM | 0.79 | 0.73 | 0.90 | 0.46 | 0.77 | 0.92 | 0.52 | ||
KNN | 0.95 | 0.96 | 0.96 | 0.87 | 0.76 | 0.94 | 0.74 | ||
Random Forest | 0.93 | 0.42 | 0.91 | 0.71 | 0.98 | 0.93 | 0.70 | ||
CNN | 0.96 | 0.85 | 0.94 | 0.80 | 0.94 | 0.99 | 0.66 | ||
CapsNet | 0.85 | 0.63 | 0.96 | 0.78 | 0.99 | 0.88 | 0.79 | ||
ResNet | 0.96 | 0.99 | 0.98 | 0.94 | 0.98 | 0.86 | 0.84 | ||
OctSqueezeNet | 0.99 | 0.99 | 1.00 | 0.93 | 0.95 | 0.95 | 0.86 | ||
ResCapNet | 0.99 | 1.00 | 1.00 | 0.98 | 0.99 | 0.97 | 0.93 |
precision | Classes | ||||||||||||
Methods | |||||||||||||
Decision Tree | 0.74 | 0.59 | 0.88 | 0.76 | 0.69 | 0.61 | 0.55 | 0.87 | 0.87 | 0.51 | 0.29 | ||
SVM | 0.74 | 0.78 | 0.96 | 0.91 | 0.77 | 0.77 | 0.84 | 0.86 | 0.65 | 0.76 | 1.00 | ||
KNN | 0.88 | 0.88 | 0.98 | 0.96 | 0.89 | 0.76 | 0.93 | 0.99 | 0.68 | 0.36 | 1.00 | ||
Random Forest | 0.98 | 0.92 | 0.88 | 1.00 | 0.97 | 0.98 | 1.00 | 0.86 | 0.86 | 0.81 | 1.00 | ||
CNN | 0.99 | 0.99 | 0.97 | 0.92 | 0.94 | 0.89 | 0.84 | 0.96 | 0.83 | 0.86 | 0.88 | ||
CapsNet | 0.82 | 0.87 | 0.95 | 0.95 | 0.97 | 0.89 | 0.94 | 0.92 | 0.90 | 0.83 | 0.85 | ||
ResNet | 0.98 | 0.99 | 0.98 | 0.99 | 1.00 | 0.98 | 0.95 | 0.98 | 0.91 | 0.90 | 0.95 | ||
OctSqueezeNet | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 0.99 | 0.88 | 0.90 | 1.00 | ||
ResCapNet | 0.99 | 1.00 | 0.97 | 1.00 | 0.99 | 1.00 | 1.00 | 0.98 | 0.93 | 0.98 | 0.96 | ||
recall | classes | ||||||||||||
methods | |||||||||||||
Decision Tree | 0.63 | 0.76 | 0.84 | 0.51 | 0.79 | 0.56 | 0.93 | 0.84 | 0.84 | 0.58 | 0.33 | ||
SVM | 0.83 | 0.69 | 0.96 | 0.89 | 0.71 | 0.65 | 0.60 | 0.87 | 0.92 | 0.11 | 0.17 | ||
KNN | 0.97 | 0.89 | 0.94 | 0.86 | 0.94 | 0.91 | 0.96 | 0.80 | 0.68 | 0.72 | 0.54 | ||
Random Forest | 0.91 | 0.92 | 0.98 | 0.53 | 0.92 | 0.71 | 0.98 | 1.00 | 1.00 | 0.32 | 0.23 | ||
CNN | 0.99 | 0.99 | 0.97 | 0.92 | 0.94 | 0.89 | 0.84 | 0.96 | 0.83 | 0.86 | 0.88 | ||
CapsNet | 0.97 | 0.85 | 0.94 | 0.64 | 0.93 | 0.84 | 1.00 | 0.97 | 0.91 | 0.52 | 0.82 | ||
ResNet | 0.99 | 1.00 | 0.99 | 0.96 | 1.00 | 0.96 | 0.92 | 0.99 | 0.97 | 0.71 | 0.88 | ||
OctSqueezeNet | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.75 | 1.00 | 0.97 | 0.67 | 0.94 | ||
ResCapNet | 0.99 | 1.00 | 1.00 | 0.92 | 0.99 | 0.98 | 0.96 | 1.00 | 0.98 | 0.73 | 0.87 |
Classes | Decision Tree | SVM | KNN | Random Forest | CNN | CapsNet | Res-Net | OctSque-ezeNet | Res-CapNet |
---|---|---|---|---|---|---|---|---|---|
68.08 ± 5.13 | 81.88 ± 3.91 | 99.50 ± 1.06 | 95.18 ± 3.89 | 93.58 ± 1.53 | 94.31 ± 1.47 | 98.25 ± 1.55 | 99.52 ± 0.09 | 99.47 ± 0.53 | |
53.69 ± 9.28 | 84.01 ± 3.12 | 80.88 ± 1.89 | 98.81 ± 1.20 | 92.78 ± 1.12 | 95.32 ± 2.13 | 99.62 ± 0.38 | 99.93 ± 0.07 | 99.82 ± 0.18 | |
73.01 ± 4.49 | 91.31 ± 5.04 | 100 | 100 | 92.87 ± 1.48 | 93.26 ± 1.81 | 99.60 ± 2.86 | 99.54 ± 0.46 | 100 | |
72.56 ± 0.12 | 81.60 ± 4.43 | 90.84 ± 2.66 | 82.55 ± 6.37 | 91.25 ± 1.47 | 94.88 ± 1.19 | 96.43 ± 2.77 | 96.29 ± 2.77 | 98.12 ± 1.22 | |
86.68 ± 2.29 | 83.67 ± 1.86 | 98.15 ± 0.31 | 90.48 ± 1.16 | 86.43 ± 1.61 | 92.74 ± 1.70 | 97.72 ± 0.93 | 98.67 ± 0.88 | 98.52 ± 0.60 | |
78.43 ± 5.27 | 61.04 ± 3.46 | 70.62 ± 1.09 | 87.02 ± 0.57 | 85.57 ± 1.69 | 83.53 ± 0.79 | 87.87 ± 2.11 | 88.75 ± 3.26 | 89.44 ± 2.63 | |
66.10 ± 0.46 | 86.23 ± 2.92 | 72.26 ± 0.43 | 84.03 ± 0.91 | 90.69 ± 2.68 | 85.51 ± 1.22 | 90.99 ± 2.76 | 92.47 ± 2.30 | 93.68 ± 2.45 |
Classes | Decision Tree | SVM | KNN | Random Forest | CNN | CapsNet | Res-Net | OctSque-ezeNet | Res-CapNet |
---|---|---|---|---|---|---|---|---|---|
71.87 ± 4.84 | 71.87 ± 1.01 | 90.66 ± 4.99 | 91.04 ± 3.59 | 98.34 ± 1.19 | 92.09 ± 1.09 | 98.54 ± 1.46 | 99.06 ± 0.94 | 98.13 ± 1.60 | |
67.46 ± 2.29 | 64.97 ± 1.94 | 82.26 ± 4.27 | 95.40 ± 4.71 | 95.40 ± 1.36 | 93.86 ± 1.21 | 98.17 ± 1.83 | 99.56 ± 0.44 | 99.76 ± 0.24 | |
83.85 ± 3.04 | 92.74 ± 1.10 | 95.07 ± 1.84 | 93.99 ± 1.49 | 93.99 ± 1.07 | 93.21 ± 1.12 | 98.03 ± 1.97 | 98.12 ± 1.43 | 98.41 ± 1.16 | |
61.09 ± 1.44 | 90.05 ± 2.11 | 96.38 ± 0.67 | 97.35 ± 0.35 | 97.35 ± 1.24 | 95.46 ± 1.13 | 95.71 ± 1.86 | 99.55 ± 0.45 | 99.63 ± 0.37 | |
66.72 ± 1.12 | 85.98 ± 1.42 | 91.53 ± 3.04 | 96.30 ± 2.77 | 96.30 ± 2.02 | 97.96 ± 1.95 | 98.92 ± 1.08 | 100 | 98.90 ± 1.10 | |
48.55 ± 6.93 | 70.04 ± 0.81 | 89.26 ± 1.38 | 94.91 ± 1.24 | 94.91 ± 1.18 | 87.28 ± 1.41 | 96.56 ± 2.29 | 95.35 ± 1.81 | 98.58 ± 1.42 | |
70.22 ± 9.40 | 88.09 ± 2.98 | 86.59 ± 2.68 | 96.78 ± 2.88 | 96.78 ± 1.87 | 95.00 ± 1.79 | 92.43 ± 2.53 | 96.94 ± 1.64 | 98.81 ± 1.19 | |
87.54 ± 2.85 | 87.05 ± 1.30 | 87.88 ± 1.55 | 95.57 ± 0.18 | 95.57 ± 1.16 | 90.22 ± 0.61 | 97.11 ± 1.62 | 97.54 ± 2.01 | 95.41 ± 1.21 | |
80.76 ± 1.41 | 64.26 ± 1.71 | 87.34 ± 1.02 | 76.94 ± 0.06 | 76.94 ± 1.27 | 84.29 ± 0.79 | 89.80 ± 2.03 | 87.48 ± 1.27 | 90.72 ± 1.76 | |
52.37 ± 0.93 | 81.03 ± 3.99 | 80.25 ± 1.30 | 73.16 ± 0.32 | 73.16 ± 1.51 | 75.42 ± 1.46 | 88.97 ± 2.67 | 89.68 ± 0.53 | 95.68 ± 2.00 | |
54.77 ± 3.34 | 97.94 ± 1.48 | 91.63 ± 1.24 | 98.13 ± 1.33 | 96.43 ± 1.41 | 98.13 ± 1.27 | 92.54 ± 2.46 | 91.68 ± 1.61 | 95.47 ± 2.48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Wang, M.; Wu, H.; Jiang, K.; Iwahori, Y. A Novel LiDAR Data Classification Algorithm Combined CapsNet with ResNet. Sensors 2020, 20, 1151. https://doi.org/10.3390/s20041151
Wang A, Wang M, Wu H, Jiang K, Iwahori Y. A Novel LiDAR Data Classification Algorithm Combined CapsNet with ResNet. Sensors. 2020; 20(4):1151. https://doi.org/10.3390/s20041151
Chicago/Turabian StyleWang, Aili, Minhui Wang, Haibin Wu, Kaiyuan Jiang, and Yuji Iwahori. 2020. "A Novel LiDAR Data Classification Algorithm Combined CapsNet with ResNet" Sensors 20, no. 4: 1151. https://doi.org/10.3390/s20041151
APA StyleWang, A., Wang, M., Wu, H., Jiang, K., & Iwahori, Y. (2020). A Novel LiDAR Data Classification Algorithm Combined CapsNet with ResNet. Sensors, 20(4), 1151. https://doi.org/10.3390/s20041151