A Prototype VP-PET Imaging System Based on Highly Pixelated CdZnTe Detectors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Small-Animal PET Configurations and Monte Carlo Simulations
2.2. Spatial Resolution and System Sensitivity
2.3. Source Phantom PET Imaging
3. Results
3.1. Spatial Resolution
3.2. System Sensitivity
3.3. PET Imaging of Point Source and Phantom
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tai, Y.C.; Wu, H.; Pal, D.; O’Sullivan, J.A. Virtual-Pinhole PET. J. Nucl. Med. 2008, 49, 471–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Pal, D.; Song, T.; O’Sullivan, J.A.; Tai, Y.C. Micro Insert: A prototype full-ring PET device for improving the image resolution of a small-animal PET scanner. J. Nucl. Med. 2008, 49, 1668–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-C.; Wu, H.; Tai, Y.-C.; Lin, K.-P.; Liu, R.-S. Evaluation of Scatter Fraction and Noise Equivalent Count Rate Performance of the microPET F-220 Scanner Integrated with the Micro Insert Device. J. Med. Biol. Eng. 2010, 30, 261–266. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, J. Theoretical analysis and simulation study of a high-resolution zoom-in PET system. Phys. Med. Biol. 2009, 54, 5193–5208. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Yang, Y.; Zhou, J.; Wu, Y.; Cherry, S.R. Experimental Assessment of Resolution Improvement of a Zoom-in PET. Phys. Med. Biol. 2011, 56, N165–N174. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Chen, X.; Li, C.; Wu, H.; Komarov, S.; Guo, Q.; Krawczynski, H.; Meng, L.J.; Tai, Y.C. Evaluation of PET Imaging Resolution using 350 μm Pixelated CZT as VP-PET Insert Detector. IEEE Trans. Nucl. Sci. 2014, 61, 154–161. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Q.; Xu, D.; Chen, X. Charge Sharing Effect on 600 um Pitch Pixelated CZT Detector for Imaging Applications. Chin. Phys. C 2014, 38, 116002. [Google Scholar] [CrossRef]
- Mitchell, G.S.; Sinha, S.; Stickel, J.R.; Bowen, S.L.; Cirignano, L.J.; Dokhale, P.; Kim, H.; Shah, K.S.; Cherry, S.R. CdTe strip detector characterization for high resolution small animal PET. IEEE Trans. Nucl. Sci. 2008, 55, 870–876. [Google Scholar] [CrossRef]
- Gu, Y.; Matteson, J.L.; Skelton, R.T.; Deal, A.C.; Stephan, E.A.; Duttweiler, F.; Gasaway, T.M.; Levin, C.S. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET. Phys. Med. Biol. 2011, 56, 1563–1584. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; He, Z.; Xu, D.; Meng, L.J. Feasibility study of using two 3-D position sensitive CZT detectors for small animal PET. IEEE Nucl. Sci. Symp. Conf. Rec. 2005, 1582–1585. [Google Scholar]
- Kastis, G.A.; Wu, M.C.; Balzer, S.J.; Wilson, D.W.; Furenlid, L.R.; Stevenson, G.; Barber, H.B.; Barrett, H.H.; Woolfenden, J.M.; Kelly, P.; et al. Tomographic small-animal imaging using a high-resolution semiconductor camera. IEEE Trans. Nucl. Sci. 2002, 49, 172–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, M.D.; Seller, P.; Veale, M.C.; Sellin, P.J. Investigation of the small pixel effect in CdZnTe detectors. IEEE Nucl. Sci. Symp. Conf. Rec. 2007, 2, 1255–1259. [Google Scholar]
- Hendrik, P.P.; Chi, L.; Peng, F.; Mikael, P.; Michal, L. Monte Carlo Simulations of the GE Discovery Alcyone CZT SPECT Systems. IEEE Trans. Nucl. Sci. 2015, 62, 832–839. [Google Scholar]
- Yoon, C.; Lee, W.; Lee, T. Simulation for CZT Compton PET (Maximization of the efficiency for PET using Compton event). Nucl. Instrum. Meth. A 2011, 652, 713–716. [Google Scholar] [CrossRef]
- Gao, W.; Liu, H.; Gao, D.; Gan, B.; Wei, T.; Hu, Y. Design of a multichannel low-noise front-end readout ASIC dedicated to CZT detectors for PET imaging. IEEE Trans. Nucl. Sci. 2014, 61, 2532–2539. [Google Scholar] [CrossRef]
- Janecek, M.; Wu, H.; Tai, Y.C. A simulation study for the design of a prototype insert for whole-body PET scanners. IEEE Trans. Nucl. Sci. 2006, 53, 1143–1149. [Google Scholar] [CrossRef]
- Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Avner, S.; Barbier, R.; Bardies, M.; Bloomfield, P.M.; et al. GATE: A simulation toolkit for PET and SPECT. Phys. Med. Biol. 2004, 49, 4543–4561. [Google Scholar] [CrossRef]
- Jan, S.; Comtat, C.; Strul, D.; Santin, G.; Trébossen, R. Monte Carlo simulation for the ECAT EXACT HR+ system using GATE. IEEE Trans. Nucl. Sci. 2005, 52, 627–633. [Google Scholar] [CrossRef]
- Bataille, F.; Comtat, C.; Jan, S.; Trébossen, R. Monte Carlo simulation for the ECAT HRRT using GATE. IEEE Nucl. Sci. Symp. Conf. Rec. 2004, 4, 2570–2574. [Google Scholar]
- Michel, C.; Eriksson, L.; Rothfuss, H.; Bendriem, B.; Lazaro, D.; Buvat, I. Influence of crystal material on the performance of the HiRez 3D PET scanner: A Monte-Carlo study. IEEE Nucl. Sci. Symp. Conf. Rec. 2006, 4, 1528–1531. [Google Scholar]
- Lamare, F.; Turzo, A.; Bizais, Y.; Le Rest, C.C.; Visvikis, D. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE. Phys. Med. Biol. 2006, 51, 943–962. [Google Scholar] [CrossRef] [PubMed]
- Schmidtlein, C.R.; Kirov, A.S.; Bidaut, L.M.; Nehmeh, S.A.; Erdi, Y.E.; Ganin, A.; Stearns, C.W.; McDaniel, D.; Hamacher, K.A.; Humm, J.L.; et al. Validation of GATE Monte Carlo simulations of the GE Advance/Discovery LS PET scanner. Med. Phys. 2006, 33, 198–208. [Google Scholar] [CrossRef]
- Jan, S.; Desbree, A.; Pain, F.; Guez, D.; Comtat, C.; Gurden, H.; Kerhoas, S.; Laniece, P.; Lefebvre, F.; Mastrippolito, R.; et al. Monte Carlo simulation of the microPET FOCUS system for small rodents imaging applications. IEEE Nucl. Sci. Symp. Conf. Rec. 2005, 3, 1653–1657. [Google Scholar]
- Lee, S.; Gregor, J.; Osborne, D. Development and Validation of a Complete GATE Model of the Siemens Inveon Trimodal Imaging Platform. Mol. Imaging 2013, 12, 1536–1548. [Google Scholar] [CrossRef]
- Merheb, C.; Nicol, S.; Petegnief, Y.; Talbot, J.N.; Buvat, I. Assessment of the Mosaic animal PET system response using list-mode data for validation of GATE Monte Carlo modelling. Nucl. Instrum. Meth. A 2006, 569, 220–224. [Google Scholar] [CrossRef]
- Aklan, B.; Jakoby, B.W.; Watson, C.C.; Braun, H.; Ritt, P.; Quick, H.H. GATE Monte Carlo simulations for variations of an integrated PET/MR hybrid imaging system based on the Biograph mMR model. Phys. Med. Biol. 2015, 60, 4731–4752. [Google Scholar] [CrossRef]
- Pal, D.; O’Sullivan, J.A.; Wu, H.; Martin, J.; Tai, Y.C. 2D linear and iterative reconstruction algorithms for a PET-insert scanner. Phys. Med. Biol. 2007, 52, 4293–4310. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Li, Y.; Wang, T.; Huang, C.; Ye, Z.; Li, G. A Prototype VP-PET Imaging System Based on Highly Pixelated CdZnTe Detectors. Sensors 2020, 20, 1294. https://doi.org/10.3390/s20051294
Yin Y, Li Y, Wang T, Huang C, Ye Z, Li G. A Prototype VP-PET Imaging System Based on Highly Pixelated CdZnTe Detectors. Sensors. 2020; 20(5):1294. https://doi.org/10.3390/s20051294
Chicago/Turabian StyleYin, Yongzhi, Yingguo Li, Tianguan Wang, Chuan Huang, Zhenqian Ye, and Gongping Li. 2020. "A Prototype VP-PET Imaging System Based on Highly Pixelated CdZnTe Detectors" Sensors 20, no. 5: 1294. https://doi.org/10.3390/s20051294
APA StyleYin, Y., Li, Y., Wang, T., Huang, C., Ye, Z., & Li, G. (2020). A Prototype VP-PET Imaging System Based on Highly Pixelated CdZnTe Detectors. Sensors, 20(5), 1294. https://doi.org/10.3390/s20051294